福建省龙岩市名校2024-2025学年九上数学开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为( )
A.9B.10C.11D.12
2、(4分)如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若 S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为( )
A.4B.8C.12D.8
3、(4分)在平面直角坐标系中,若直线y=2x+k经过第一、二、三象限,则k的取值范围是( )
A.k>0B.k<0C.k≤0D.k≥0
4、(4分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为( )
A.10%B.15%C.20%D.25%
5、(4分)为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下列叙述正确的是( )
A.25000名学生是总体
B.1200名学生的身高是总体的一个样本
C.每名学生是总体的一个个体
D.以上调查是全面调查
6、(4分)如图,已知的顶点,,点在轴的正半轴上,按以下步骤作图:①以点为圆心、适当长度为半径作弧,分别交、于点,;②分别以点,为圆心、大于的长为半径作弧,两弧在内交于点;③作射线,交边于点.则点的坐标为( )
A.B.C.D.
7、(4分)在△ABC中,AB=,BC=,AC=,则( )
A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B
8、(4分)小红随机写了一串数“”,数字“”出现的频数是( )
A.4B.5C.6D.7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为4,则第n个矩形的面积为_____.
10、(4分)在从小到大排列的五个整数中,中位数是2,唯一的众数是4,则这五个数和的最大值是__________.
11、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
12、(4分)把多项式因式分解成,则的值为________.
13、(4分)已知,则=______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在平行四边形ABCD中,对角线AC、BD交于点O,点E、F在AC上,且AE=CF,求证:DE=BF.
15、(8分)某中学图书室计划购买了甲、乙两种故事书.若购买7本甲种故事书和4本乙种故事书需510元;购买3本甲种故事书和5本乙种故事书需350元.
(1)求甲种故事书和乙种故事书的单价;
(2)学校准备购买甲、乙两种故事书共200本,且甲种故事书的数量不少于乙种故事书的数量的,请设计出最省钱的购买方案,并说明理由.
16、(8分)先化简,再求代数式的值,其中.
17、(10分)把一张长方形纸片按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,
求:(1)DF的长;(2)重叠部分△DEF的面积.
18、(10分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:
(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)
请根据上述信息解决下列问题:
(1)根据表中数据在如图给出的坐标系中,描出相应的点;
(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;
(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
20、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
21、(4分)的非负整数解为______.
22、(4分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.
23、(4分)若直线与坐标轴所围成的三角形的面积为6,则k的值为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,四边形ABCD中,,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.
(1)求证:四边形BDFC是平行四边形;
(2)若△BCD是等腰三角形,求四边形BDFC的面积.
25、(10分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
26、(12分)如图,在中,,,点在延长线上,点在上,且,延长交于点,连接、.
(1)求证:;
(2)若,则__________.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=7,BC=AD,AD∥BC.
∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=7,DC=DE=7,∴EF=AF+DE﹣AD=7+7﹣AD=3,∴AD=1,∴BC=1.
故选C.
点睛:本题考查了平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.
2、B
【解析】
外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.
【详解】
解:根据勾股定理我们可以得出:
AB2+AC2=BC2
S正方形ADEB= AB2=6,S正方形BFGC= BC2=18,
S正方形CHIA= AC2=18-6=12,
∴AC=,
∴四边形CHIA的周长为==8
故选:B.
本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
3、A
【解析】
根据一次函数的性质求解.
【详解】
一次函数的图象经过第一、二、三象限,那么.故选A.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、C
【解析】
根据商品的原来的价格(1-每次降价的百分数)2=现在的价格,设出未知数,列方程求解即可.
【详解】
解:设这种商品平均每次降价的百分率为x
根据题意列方程得:
解得(舍)
故选C.
本题主要考查一元二次方程的应用,关键在于根据题意列方程.
5、B
【解析】
试题解析:A、总体是25000名学生的身高情况,故A错误;
B、1200名学生的身高是总体的一个样本,故B正确;
C、每名学生的身高是总体的一个个体,故C错误;
D、该调查是抽样调查,故D错误.
故选B.
6、B
【解析】
依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=,可得G(,3).
【详解】
解:如图:
∵▱AOBC的顶点O(0,0),A(-1,3),
∴AH=1,HO=3,
∴Rt△AOH中,AO=,
由题可得,OF平分∠AOB,
∴∠AOG=∠EOG,
又∵AG∥OE,
∴∠AGO=∠EOG,
∴∠AGO=∠AOG,
∴AG=AO=,
∴HG=,
∴G(,3),
故选:B.
本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.
7、A
【解析】
试题解析:∵在△ABC中,AB=,BC=,AC=,
∴
∴∠A=90°
故选A.
8、D
【解析】
根据频数的概念:频数是表示一组数据中符合条件的对象出现的次数.
【详解】
∵一串数“”中,数字“3”出现了1次,
∴数字“3”出现的频数为1.
故选D.
此题考查频数与频率,解题关键在于掌握其概念
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
第二个矩形的面积为第一个矩形面积的,第三个矩形的面积为第一个矩形面积的,依此类推,第n个矩形的面积为第一个矩形面积的.
【详解】
解:第二个矩形的面积为第一个矩形面积的;
第三个矩形的面积是第一个矩形面积的;
…
故第n个矩形的面积为第一个矩形面积的.
又∵第一个矩形的面积为4,
∴第n个矩形的面积为.
故答案为:.
本题考查了矩形、菱形的性质.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
10、2
【解析】
根据中位数和众数的定义分析可得答案.
【详解】
解:因为五个整数从小到大排列后,其中位数是2,这组数据的唯一众数是1.
所以这5个数据分别是x,y,2,1,1,且x<y<2,
当这5个数的和最大时,整数x,y取最大值,此时x=0,y=1,
所以这组数据可能的最大的和是0+1+2+1+1=2.
故答案为:2.
主要考查了根据一组数据的中位数来确定数据的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
11、1
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
【详解】
解:∵D、E分别为AB、AC的中点,
∴DE=BC=2.5,
∵AF⊥CF,E为AC的中点,
∴EF=AC=1.5,
∴DF=DE﹣EF=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
12、
【解析】
根据多项式的乘法法则计算,然后即可求出m的值.
【详解】
∵=x2+6x+5,
∴m=6.
故答案为:6.
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解是乘法运算的逆运算.
13、
【解析】
已知等式整理表示出a,原式通分并利用同分母分式的加减法则计算,把表示出的a代入计算即可求出值.
【详解】
解:由=,得到2a=3b,即a=,
则原式===.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
首先连接BE,DF,由四边形ABCD是平行四边形,AE=CF,易得OB=OD,OE=OF,即可判定四边形BEDF是平行四边形,继而证得DE=BF.
【详解】
连接BE,DF,
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OA﹣AE=OC﹣CF,
∴OE=OF,
∴四边形BEDF是平行四边形,
∴DE=BF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
15、(1)甲种故事书的单价是50元,乙种故事书的单价是40元;(2)当购买甲种故事书67本,乙种故事书133本时最省钱.
【解析】
(1)根据题意可以列出相应的方程组,本题得以解决;
(2)根据题意可以得到费用与购买甲种故事书本数之间的关系,然后利用一次函数的性质即可解答本题.
【详解】
解:(1)设甲种故事书的单价是x元,乙种故事书的单价是y元,
,得,
答:甲种故事书的单价是50元,乙种故事书的单价是40元;
(2)当购买甲种故事书67本,乙种故事书133本时最省钱,
理由:设购买甲种故事书a本,总费用为w元,
w=50a+40(200﹣a)=10a+8000,
∵a≥(200﹣a),
解得,,
∴当a=67时,w取得最小值,此时w=8670,200﹣a=133,
答:当购买甲种故事书67本,乙种故事书133本时最省钱.
本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
16、
【解析】
先将括号内式子通分化简,再与右侧式子约分,最后代入求值.
【详解】
解:原式
当时,
原式
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
17、(1) DF的长为3.4cm;(2)△DEF的面积为:S=5.1.
【解析】
(1)设DF=xcm,由折叠可知FB=DF=x,所以,CF=5-x,CD=AB=3,在Rt△DCF中根据勾股定理列式求解即可;
(2)根据折叠的性质得到∠EFB=∠EFD,根据平行线的性质得到DEF=∠EFB,等量代换得到∠DEF=∠DFE,于是DE=DF=3.4,然后根据三角形的面积公式计算即可;
【详解】
解:(1)设DF=xcm,
由折叠可知,FB=DF=x,所以,CF=5-x,CD=AB=3,
在Rt△DCF中,32+(5-x)2=x2,
解得:x=3.4cm
所以,DF的长为3.4cm
(2)由折叠可知∠EFB=∠EFD,
又AD∥BC,
所以,∠DEF=∠EFB,
所以,∠DEF=∠DFE,
所以,DE=DF=3.4,
△DEF的面积为:S==5.1
此题主要考查了折叠问题,矩形的性质,勾股定理,得出AE=A′E,根据勾股定理列出关于x的方程是解决问题的关键.
18、(1)见解析;(2)第一次加热:,;第一次降温:,;(3)分钟.
【解析】
(1)利用描点法画出图形即可;
(2)利用待定系数法即可解决问题;
(3)首先判断出而18:00至1:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;
【详解】
解:(1)如图所示:
(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,
则有,
解得:,
∴第一次加热过程的函数关系是y=2x+1.(0≤t≤40)
由图象可知第一次降温过程的函数关系是反比例函数,设y=,
把(50,80)代入得到m=4000,
∴第一次降温过程的函数关系是y=(40≤t≤100).
(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至1:10共130分钟,
∴饮水机加热一次,降温一次,再加热了一次,
把y=80代入y=2t+1,得到t=30,把y=90代入y=2x+1,得到t=35,
∴一次加热过程出现的最佳水温时间为:35−30=5分钟,
把y=80代入y=,得到t=50,把y=90代入y=,得到t=,
∴一次降温出现的最佳水温时间为:50−=(分钟),
∴18:00开启饮水机(初始水温1℃)到当晚1:10,沏茶的最佳水温时间共:+5×2=(分钟).
本题考查的是反比例函数的应用、一次函数的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4或1
【解析】
分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
【详解】
解:分两种情况:
①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CD−CF=10,
∴CD′==6,
∴BD'=BC−CD'=12,
设AE=x,则BE=18−x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,
∴182+x2=(18−x)2+122,
解得:x=4,即AE=4;
②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
∴DE=D′E,
∵正方形ABCD的边长是18,
∴AB=BC=CD=AD=18,
∵CF=8,
∴DF=D′F=CD−CF=10,CD'==6,
∴BD'=BC+CD'=24,
设AE=x,则BE=18−x,
在Rt△AED和Rt△BED'中,
由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,
∴182+x2=(18−x)2+242,
解得:x=1,即AE=1;
综上所述,线段AE的长为4或1;
故答案为:4或1.
本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.
20、,
【解析】
根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
【详解】
正△的边长,
正△的面积,
点、、分别为△的三边中点,
,,,
△△,相似比为,
△与△的面积比为,
正△的面积为,
则第个正△的面积为,
故答案为:;.
本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
21、0,1,2
【解析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得:,
合并同类项,得,
不等式两边同时除以-7,得,
所以符合条件的非负整数解是0,1,2.
本题考查了不等式的解法和非负整数解的知识,准确求解不等式是解决这类问题的关键.
22、1
【解析】
根据加权平均数的计算公式列出算式,再进行计算即可.
【详解】
解:根据题意得:
95×20%+1×30%+88×50%=1(分).
即小彤这学期的体育成绩为1分.
故答案为:1.
本题考查加权平均数,掌握加权平均数的计算公式是解题的关键.
23、±
【解析】
由直线的性质可知,当x=0时,可知函数与y轴的交点为(0,3),设图象与x轴的交点到原点的距离为a,根据三角形的面积为6,求出a的值,从而求出k的值.
【详解】
当x=0时,可知函数与y轴的交点为(0,3),
设图象与x轴的交点到原点的距离为a,
则×3a=6,
解得:a=4,
则函数与x轴的交点为(4,0)或(-4,0),
把(4,0)代入y=kx+3得,4k+3=0,k=-,
把(-4,0)代入y=kx+3得,-4k+3=0,k=,
故答案为:±.
本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,解答时要注意进行分类讨论.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)6或
【解析】
(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;
(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.
【详解】
解:(1)证明:∵∠A=∠ABC=90°
∴AF∥BC
∴∠CBE=∠DFE,∠BCE=∠FDE
∵E是边CD的中点
∴CE=DE
∴△BCE≌△FDE(AAS)
∴BE=EF
∴四边形BDFC是平行四边形
(2)若△BCD是等腰三角形
①若BD=BC=3
在Rt△ABD中,AB=
∴四边形BDFC的面积为S=×3=6;
②若BC=DC=3
过点C作CG⊥AF于G,则四边形AGCB是矩形,
所以,AG=BC=3,
所以,DG=AG-AD=3-1=2,
在Rt△CDG中,由勾股定理得,
∴四边形BDFC的面积为S=.
③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;
综上所述,四边形BDFC的面积是6或
本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.
25、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
【解析】
(1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
(2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
【详解】
解:(1)设P与V之间的函数表达式为
当V=0.8时,P=120,
所以
∴F=96
∴P与V之间的函数表达式为
(2)当 时,
∴
∴为确保气球不爆炸,气球的体积应不小于0.96
答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
26、(1)见解析;(2)75°
【解析】
(1)证明Rt△ABE≌Rt△CBF,即可得到结论;
(2)由Rt△ABE≌Rt△CBF证得BE=BF,∠BEA=∠BFC,求出∠BFE=∠BEF=45°,B、E、G、F四点共圆,根据圆周角定理得到∠BGF=∠BEF=45°即可求出答案.
【详解】
(1)∵,
∴∠CBF=,
在Rt△ABE和Rt△CBF中,
,
∴Rt△ABE≌Rt△CBF,
∴BE=BF;
(2)∵BE=BF,∠CBF=90°,
∴∠BFE=∠BEF=45°,
∵Rt△ABE≌Rt△CBF,
∴∠BEA=∠BFC,
∵∠BEA+∠BAE=90°,
∴∠BFC+∠BAE=90°,
∴∠AGF=90°,
∵∠AEB+∠BEG=180°,
∴∠BEG+∠BFG=180°,
∵∠AGF+∠FBC=180°,
∴B、E、G、F四点共圆,
∵BE=BF,
∴∠BGF=∠BEF=45°,
∵∠GBF=60°,
∴∠GFB=180°-∠GBF-∠BGF=75°,
故答案为:75°.
此题考查全等三角形的判定与性质,等腰三角形的性质,四点共圆的判定,三角形的内角和定理,证明四点共圆是解此题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
第一次加热、降温过程
…
t(分钟)
0
10
20
30
40
50
60
70
80
90
100
…
y()
20
40
60
80
100
80
66.7
57.1
50
44.4
40
…
福建省龙岩市永定区湖坑中学2024-2025学年数学九上开学复习检测模拟试题【含答案】: 这是一份福建省龙岩市永定区湖坑中学2024-2025学年数学九上开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省龙岩市金丰片区2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份福建省龙岩市金丰片区2024-2025学年数学九年级第一学期开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
福建省(三元县2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份福建省(三元县2024-2025学年九上数学开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。