![福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16260627/0-1729118424795/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16260627/0-1729118424827/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16260627/0-1729118424855/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
福建省惠安高级中学2024年九年级数学第一学期开学统考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列四个选项中,关于一次函数的图象或性质说法错误的是
A.随的增大而增大B.经过第一,三,四象限
C.与轴交于D.与轴交于
2、(4分)如图图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
3、(4分)如图,每个图案都由若干个“●”组成,其中第①个图案中有7个“●”,第②个图案中有13个“●”,…,则第⑨个图案中“●”的个数为( )
A.87B.91C.103D.111
4、(4分)如图,在矩形中,点的坐标为,则的长是( )
A.B.C.D.
5、(4分)如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为( )
A.(1,0)B.(,0)C.(,0)D.(2,0)
6、(4分)下列各组数中是勾股数的为( )
A.1、2、3B.4、5、6C.3、4、5D.7、8、9
7、(4分)代数式在实数范围内有意义,则的取值范围是( )
A.B.C.D.
8、(4分)如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则BC的长为( )
A.4cmB.5cmC.6cmD.8cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:
则这10个小组植树株数的方差是_____.
10、(4分)一个多边形的内角和是它外角和的1.5倍,那么这个多边形是______边形.
11、(4分)点A(-1,y1),B(3,y2)是直线y=-4x+3图象上的两点,则y1______y2(填“>”或“<”).
12、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
13、(4分)已知则第个等式为____________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;
(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?
15、(8分)如图,在△ABC中,∠ACB=90°,BC=AC=6,D是AB边上任意一点,连接CD,以CD为直角边向右作等腰直角△CDE,其中∠DCE=90°,CD=CE,连接BE.
(1)求证:AD=BE;
(2)当△CDE的周长最小时,求CD的值;
(3)求证:.
16、(8分)如图,在△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,点O是EF中点,连结BO井延长到G,且GO=BO,连接EG,FG
(1)试求四边形EBFG的形状,说明理由;
(2)求证:BD⊥BG
(3)当AB=BE=1时,求EF的长,
17、(10分)某书店准备购进甲、乙两种图书共100本,购书款不高于1118元,预这100本图书全部售完的利润不低于1100元,两种图书的进价、售价如表所示:
请回答下列问题:
(1)书店有多少种进书方案?
(2)在这批图书全部售出的条件下,(1)中的哪种方案利润最大?最大利润是多少?(请你用所学的一次函数知识来解决)
18、(10分)如图,已知平面直角坐标系中,直线与x轴交于点A,与y轴交于B,与直线y=x交于点C.
(1)求A、B、C三点的坐标;
(2)求△AOC的面积;
(3)已知点P是x轴正半轴上的一点,若△COP是等腰三角形,直接写点P的坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)据统计,2008年上海市常住人口数量约为18884600人,用科学计数法表示上海市常住人口数是___________.(保留4个有效数字)
20、(4分)如图,点A,B分别是反比例函数y=与y=的图象上的点,连接AB,过点B作BC⊥x轴于点C,连接AC交y轴于点E.若AB∥x轴,AE:EC=1:2,则k的值为_____.
21、(4分)已知直线y=2x﹣5经过点A(a,1﹣a),则A点落在第_____象限.
22、(4分)分解因式:2x2-8x+8=__________.
23、(4分)已知、满足方程组,则的值为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,正方形网格中每个小正方形边长都是,图中标有、、、、、、共个格点(每个小格的顶点叫做格点)
(1)从个格点中选个点为顶点,在所给网格图中各画出-一个平行四边形:
(2)在(1)所画的平行四边形中任选-一个,求出其面积.
25、(10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
26、(12分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数的图象和性质,判断各个选项中的说法是否正确即可.
【详解】
解:∵y=x−2,k=1,
∴该函数y随x的增大而增大,故选项A正确,
该函数图象经过第一、三、四象限,故选项B正确,
与x轴的交点为(2,0),故选项C错误,
与y轴的交点为(0,−2),故选项D正确,
故选:C.
本题考查一次函数的图象和性质,解答本题的关键是明确题意,利用一次函数的性质解答.
2、D
【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.
【详解】
解:A.是轴对称图形,不是中心对称图形.故本选项不符合题意;
B.不是轴对称图形,是中心对称图形.故本选项不符合题意;
C.是轴对称图形,不是中心对称图形.故本选项不符合题意;
D.是轴对称图形,也是中心对称图形.故本选项符合题意.
故选:D.
此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.
3、D
【解析】
根据第①个图案中“●”有:1+3×(0+2)个,第②个图案中“●”有:1+4×(1+2)个,第③个图案中“●”有:1+5×(2+2)个,第④个图案中“●”有:1+6×(3+2)个,据此可得第⑨个图案中“●”的个数.
【详解】
解:∵第①个图案中“●”有:1+3×(0+2)=7个,
第②个图案中“●”有:1+4×(1+2)=13个,
第③个图案中“●”有:1+5×(2+2)=21个,
第④个图案中“●”有:1+6×(3+2)=31个,
…
∴第9个图案中“●”有:1+11×(8+2)=111个,
故选:D.
本题考查规律型:图形的变化,解题的关键是将原图形中的点进行无重叠的划分来计数.
4、C
【解析】
连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.
【详解】
解:连接OB,过B作BM⊥x轴于M,
∵点B的坐标是(1,4),
∴OM=1,BM=4,由勾股定理得:OB=,
∵四边形OABC是矩形,
∴AC=OB,
∴AC=,
故选:C.
本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.
5、C
【解析】
根据点D的画法可得出AD平分∠OAB,由角平分线的性质结合相似三角形的性质可得出∠OBA=∠OAB,利用二角互补即可求出∠OBA=∠OAP=30°,通过解含30度角的直角三角形即可得出点P的坐标.
【详解】
解:由点D的画法可知AD平分∠OAB.
∵△OPA∽△OAB,
∴∠OAP=∠OBA=∠OAB.
∵∠OAB+∠OBA=∠OAB+∠OAB=90°,
∴∠OAB=60°,∠OAP=30°,
∴AP=2OP.
在Rt△OAP中,∠AOP=90°,OA=2,
,
∴OP=,
∴点P的坐标为(,0).
故选:C.
本题考查了基本作图、角平分线的性质、相似三角形的性质以及解含30度角的直角三角形,求出∠OAP=30°是解题的关键.
6、C
【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.
【详解】
解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;
B.∵42+52=41≠62=36,∴不是勾股数,故B错误;
C.∵32+42=25=52=25,∴是勾股数,故C正确;
D.∵72+82=113≠92=81,∴不是勾股数,故D错误.
故选C.
本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.
7、C
【解析】
直接根据二次根式被开方数为非负数解题即可.
【详解】
由题意得:,∴.
故选:C.
本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.
8、A
【解析】
利用平行四边形的性质得出AO=CO,DO=BO,再利用勾股定理得出AD的长进而得出答案.
【详解】
∵四边形ABCD是平行四边形,
∴DO=BO,AO=CO,
∵∠ODA=90°,AC=10cm,BD=6cm,
∴DO=3cm,AO=5cm,则AD=BC==4(cm)
故选;A.
此题考查平行四边形的性质,解题关键在于利用勾股定理进行求解.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、0.1.
【解析】
求出平均数,再利用方差计算公式求出即可:
根据表格得,平均数=(5×3+1×4+7×3)÷10=1.
∴方差=.
【详解】
请在此输入详解!
10、五
【解析】
设多边形边数为n.
则360°×1.5=(n−2)⋅180°,
解得n=5.
故选C.
点睛:多边形的外角和是360度,多边形的内角和是它的外角和的1.5倍,则多边形的内角和是540度,根据多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.
11、y1>y2
【解析】
∵在中,,
∴在函数中,y随x的增大而减小.
又∵,
∴,即空格处应填“>”.
12、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
13、
【解析】
根据21-20=20,22-21=21,23-22=22,可得被减数、减数、差都是以2为底数的幂的形式,减数和差的指数相同,被减数的指数比减数和差的指数都多1,第n个等式是:2n−2n−1=2n−1。
三、解答题(本大题共5个小题,共48分)
14、(1)甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)y=24-2x;
(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
【解析】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;
(2)根据总社区计划对面积为1200m2,即可列出函数关系式;
(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.
【详解】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,
经检验,x=50是方程的解,
故甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)依题意得100x+50y=1200,
化简得y=24-2x,
故求y与x的函数解析式为y=24-2x;
(3)∵工期不得超过14天,
∴x+y≤14,0≤x≤14,0≤y≤14
即x+24-2x≤14,解得x≥10,
∴x的取值为10≤x≤12;
设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,
当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a
当x=12时,w=(1600+a)×12=19200+12a,
∵100≤a≤300,经过计算得
当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.
15、(1)见解析;(1);(3)见解析
【解析】
(1)先判断出∠ACD=∠BCE,得出△ADC≌△CBE(SAS),即可得出结论;
(1)先判断出DE=CD,进而得出△CDE的周长为(1+)CD,进而判断出当CD⊥AB时,CD最短,即可得出结论;
(3)先判断出∠A=∠ABC=45°,进而判断出∠DBE=90°,再用勾股定理得出BE1+DB1=DE1,即可得出结论.
【详解】
证明:(1)∵∠ACB=∠DCE=90°,
∴∠1+∠3=90°,∠1+∠3=90°,
∴∠1=∠1.
∵BC=AC,CD=CE,
∴△CAD≌△CBE,
∴AD=BE.
(1)∵∠DCE=90°,CD=CE.
∴由勾股定理可得CD=.
∴△CDE周长等于CD+CE+DE==.
∴当CD最小时△CDE周长最小.
由垂线段最短得,当CD⊥AB时,△CDE的周长最小.
∵BC=AC=6,∠ACB=90°,
∴AB=6.
此时AD=CD=.
∴当CD时,△CDE的周长最小.
(3)由(1)易知AD=BE,∠A=∠CBA=∠CBE=45°,
∴∠DBE=∠CBE+∠CBA=90°.
在Rt△DBE中:.
在Rt△CDE中:.
∴.
此题是三角形综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理,判断出CD⊥AB时,CD最短是解本题的关键.
16、 (1) 四边形EBFG是矩形;(2)证明见解析;(3).
【解析】
(1)根据对角线互相平分的四边形平行四边形可得四边形EBFG是平行四边形,再由∠CBF=90°,即可判断▱EBFG是矩形.
(2)由直角三角形斜边中线等于斜边一半可知BD=CD,OB=OE,即可得∠C=∠CBD,∠OEB=∠OBE,由∠FDC=90°即可得∠DBG=90°;
(3)连接AE,由AB=BE=1勾股定理易求AE=,结合已知易证△ABC≌△EBF,得BF=BC=1+再由勾股定理即可求出EF=.
【详解】
解:(1)结论:四边形EBFG是矩形.
理由:∵OE=OF,OB=OG,
∴四边形EBFG是平行四边形,
∵∠ABC=90°即∠CBF=90°,
∴▱EBFG是矩形.
(2)∵CD=AD,∠ABC=90°,
∴BD=CD
∴∠C=∠CBD,
同理可得:∠OEB=∠OBE,
∵DF垂直平分AC,即∠EDC=90°,
∴∠C+∠DEC=90°,
∵∠DEC=∠OEB,
∴∠CBD+∠OBE=90°,
∴BD⊥BG.
(3)如图:连接AE,
在Rt△ABE中,AB=BE=1,
∴AE=,
∵DF是AC垂直平分线,
∴AE=CE,
∴BC=1+
∵∠CDE=∠CBF=90°,
∴∠C=∠BFE,
在△ABC和△EBF中,
,
∴△ABC≌△EBF(AAS)
∴BF=BC,
在Rt△BEF中,BE=1,BF=1+,
∴EF=.
本题主要考查了矩形的判定、全等三角形判定和性质、勾股定理和直角三角形性质,解(2)题关键是通过直角三角形斜边中线等于斜边一半得出BD=CD,OB=OE, 解(3)题关键证明△ABC≌△EBF.
17、(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元
【解析】
(1)利用购书款不高于1118元,预计这100本图书全部售完的利润不低于1100元,结合表格中数据得出不等式组,求出即可;
(2)设利润为W,根据题意得W=10x+12(100-x)=-2x+1200,W随x的增大而减小,故购进甲种书:47种,乙种书:53本利润最大,代入求出即可;
【详解】
解:(1)设购进甲种图书x本,则购进乙书(100-x)本,根据题意得出:
解得:47≤x≤1.
故有4种购书方案:甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1;
(2)设利润为W,根据题意得
W=10x+12(100-x)=-2x+1200,
根据一次函数的性质得,W随x的增大而减小,
故购进甲种书:47本,乙种书:53本,利润最大,
最大利润W=-2×47+1200=1106,
所以甲47,乙53利润最大,最大利润1106元.
故答案为:(1)4种,甲47,乙53;甲48,乙52;甲49,乙51;甲1,乙1(2)甲47,乙53利润最大,最大利润1106元
本题考查不等式组的应用以及一次函数的性质以及最佳方案问题,正确得出不等式关系是解题关键.
18、(1)A(-4,0);B(0,2);C(4,4);(2)1;(3)(4,0)或(1,0)或(,0).
【解析】
试题分析:(1)分别根据一次函数x=0或y=0分别得出点A和点B的坐标,将两个方程列成方程组,从而得出点C的坐标;(2)过点C作CD⊥x轴,从而得出AO和CD的长度,从而得出三角形的面积;(3)根据等腰三角形的性质得出点P的坐标.
试题解析:(1)当x=0得y=2,则B(0,2),当y=0得x=-4,则A(-4,0),
由于C是两直线交点,联立直线解析式为
解得:
则点C的坐标为(4,4)
(2)过点C作CD⊥x轴与点D
∴AO=4,CD=4
∴=AO·CD=×4×4=1.
(3)点P的坐标为(4,0)或(1,0)或(,0).
考点:(1)一次函数;(2)等腰三角形的性质
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.888×
【解析】
先用用科学记数法表示为:的形式,然后将保留4位有效数字可得.
【详解】
18884600=1.88846×≈1.888×
故答案为:1.888×
本题考查科学记数法,注意科学记数法还可以表示较小的数,表示形式为:.
20、1.
【解析】
设A(m,),则B(﹣mk,),设AB交y轴于M,利用平行线的性质,得到AM和MB的比值,即可求解.
【详解】
解:设A(m,),则B(﹣mk,),设AB交y轴于M.
∵EM∥BC,
∴AM:MB=AE:EC=1:1,
∴﹣m:(﹣mk)=1:1,
∴k=1,
故答案为1.
本题考查的知识点是反比例函数系数k的几何意义,解题关键是利用平行线的性质进行解题.
21、四.
【解析】
把点A(a,1-a)代入直线y=2x-5求出a的值,进而可求出A点的坐标,再根据各象限内点的坐标特点判断出A点所在的象限即可.
【详解】
把点A(a,1−a)代入直线y=2x−5得,2a−5=1−a,解得a=2,
故A点坐标为(2,−1),
由A点的坐标可知,A点落在第四象限.
故答案为:四.
本题考查了一次函数图象上点的坐标特征,牢牢掌握一次函数图像上的坐标特征是解答本题的关键.
22、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
23、-80
【解析】
先将所求的式子分解因式,再把已知的式子整体代入计算即可.
【详解】
解:,
故答案为-80.
本题考查了多项式的因式分解和整体代入的数学思想,正确的进行多项式的因式分解是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)根据平行四边形的性质即可得到结论;
(2)根据平行四边形的面积公式计算即可得到结论.
【详解】
解:(1)如图所示,平行四边形ACEG和平行四边形BFGD即为所求;
(2)菱形DBFG面积=
=
=12
或平行四边形面积=
=15
本题考查了作图——应用与设计作图,解此类题目首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.
25、(1)证明见解析(2)
【解析】
试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
试题解析:(1)证明:因为四边形ABCD是矩形,
所以AD∥BC,
所以∠PDO=∠QBO,
又因为O为BD的中点,
所以OB=OD,
在△POD与△QOB中,
∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
所以△POD≌△QOB,
所以OP=OQ.
(2)解:PD=8-t,
因为四边形PBQD是菱形,
所以PD=BP=8-t,
因为四边形ABCD是矩形,
所以∠A=90°,
在Rt△ABP中,
由勾股定理得:,
即,
解得:t=,
即运动时间为秒时,四边形PBQD是菱形.
考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.
26、(1)200;(2)补图见解析;(3)12;(4)300人.
【解析】
(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)结合扇形图,分别求出人数,再画图;(3)用社科类百分比×2500可得.
【详解】
解:(1)200,126;
(2)
(3)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
∴该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数:
2500×12%=300(人)
本题考核知识点:数据的整理,用样本估计总体.解题关键点:从统计图获取信息.
题号
一
二
三
四
五
总分
得分
批阅人
植树株数(株)
5
6
7
小组个数
3
4
3
甲种图书
乙种图书
进价(元/本)
8
14
售价(元/本)
18
26
福建省惠安科山中学2024-2025学年数学九上开学监测模拟试题【含答案】: 这是一份福建省惠安科山中学2024-2025学年数学九上开学监测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届福建省泉州市晋江区安海片区数学九年级第一学期开学统考模拟试题【含答案】: 这是一份2025届福建省泉州市晋江区安海片区数学九年级第一学期开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年福建省泉州市惠安县数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年福建省泉州市惠安县数学九年级第一学期开学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。