北京东城北京二中学2024年数学九年级第一学期开学监测模拟试题【含答案】
展开
这是一份北京东城北京二中学2024年数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,四边形和四边形都是正方形,边在轴上,边在轴上,点在边上,反比例函数,在第二象限的图像经过点,则正方形与正方形的面积之差为( )
A.6B.8C.10D.12
2、(4分)若样本x1+1,x2+1,x3+1,…,xn+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,xn+2,下列结论正确的是( )
A.平均数为18,方差为2B.平均数为19,方差为2
C.平均数为19,方差为3D.平均数为20,方差为4
3、(4分)如图,Rt△ABC中,∠C=90°,AB=10,BC=8,将△ABC折叠,使B点与AC的中点D重合,折痕为EF,则线段BF的长是( )
A.B.2C.D.
4、(4分)如图,在平行四边形ABCD中,点E在边DC上,联结AE并延长交BC的延长线于点F,若AD=3CF,那么下列结论中正确的是( )
A.FC:FB=1:3B.CE:CD=1:3C.CE:AB=1:4D.AE:AF=1:1.
5、(4分)二次根式在实数范围内有意义,那么的取值范围是( )
A.B.C.D.
6、(4分)下列图形中,绕某个点旋转180°能与自身重合的图形有( )
(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.
A.2个 B.3个 C.4个 D.5个
7、(4分)如图,在中,D,E,F分别为BC,AC,AB边的中点,于H,,则DF等于( )
A.4B.8C.12D.16
8、(4分)若函数有意义,则
A. B. C. D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于x的方程x2+(3﹣2k)x+k2+1=0的两个实数根分别是x1、x2,当|x1|+|x2|=7时,那么k的值是__.
10、(4分)已知实数a、b在数轴上的位置如图所示,则化简的结果为________
11、(4分)观察下列各式,并回答下列问题:
①;②;③;……
(1)写出第④个等式:________;
(2)将你猜想到的规律用含自然数的代数式表示出来,并证明你的猜想.
12、(4分)正方形的一边和一条对角线所成的角是________度.
13、(4分)将一根长为15cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简:,再从的范围内选取一个合适的整数作为的值代入求值.
15、(8分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.
(1)根据信息,求题中的一次函数的解析式.
(2)根据关系式画出这个函数图象.
16、(8分)将含有45°角的直角三角板ABC和直尺如图摆放在桌子上,然后分别过A、B两个顶点向直尺作两条垂线段AD,BE.
(1)请写出图中的一对全等三角形并证明;
(2)你能发现并证明线段AD,BE,DE之间的关系吗?
17、(10分)阅读下列材料,并解爷其后的问题:
我们知道,三角形的中位线平行于第一边,且等于第三边的一半,我们还知道,三角形的三条中位线可以将三角形分成四个全等的一角形,如图1,若D、E、F分别是三边的中点,则有,且
(1)在图1中,若的面积为15,则的面积为___________;
(2)在图2中,已知E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形EFGH是平行四边形;
(3)如图3中,已知E、F、G、H分别是AB、BC、CD、AD的中点,,则四边形EFGH的面积为___________.
18、(10分)一辆汽车和一辆摩托车分别从,两地去同一城市,它们离地的路程随时间变化的图象如图所示,根据图象中的信息解答以下问题:
(1),两地相距______;
(2)分别求出摩托车和汽车的行驶速度;
(3)若两图象的交点为,求点的坐标,并指出点的实际意义.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为_____米.
20、(4分)已知y轴上的点P到原点的距离为7,则点P的坐标为_____.
21、(4分)如图,在中,,,点D在边上,若以、为边,以为对角线,作,则对角线的最小值为_______.
22、(4分)已知若关于x的分式方程有增根,则__________.
23、(4分)如图,在平面直角坐标系内所示的两条直线,其中函数随增大而减小的函数解析式是______________________
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数的图象经过点 和.
(1)求该函数图像与x轴的交点坐标;
(2)判断点是否在该函数图像上.
25、(10分)先化简,再求值:其中,
26、(12分)某通信公司策划了两种上网的月收费方式:
设每月上网时间为,方式的收费金额分别为(元),(元),如图是与之间函数关系的图象.(友情提示:若累计上网时间不超出包时上网时间,则只收月使用费;若累计上网时间超出包时上网时间,则对超出部分再加收超时费)
(1) , , ;
(2)求与之间的函数解析式;
(3)若每月上网时间为31小时,请直接写出选择哪种方式能节省上网费.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
设正方形AOBC的边长为a,正方形CDEF的边长为b,则E(a-b,a+b),根据E在反比例函数上得到(a+b)(a-b)=8,再求出S正方形AOBC=a2,S正方形CDEF=b2,即可求出面积之差.
【详解】
设正方形AOBC的边长为a,正方形CDEF的边长为b,
则E(a-b,a+b),
∵E在反比例函数上
∴(a+b)(a-b)=8,即a2 -b2=8
∴S正方形AOBC-S正方形CDEF=a2-b2=8
故选B.
此题主要考查反比例函数的图像,解题的关键是根据题意找到E点坐标.
2、B
【解析】
根据平均数、方差的意义以及求解方法进行求解即可得.
【详解】
由题意可知:
,
=
=2,
所以
=,
=
=2,
故选B.
本题考查了平均数、方差的计算,熟练掌握平均数以及方差的计算公式是解题的关键.
3、D
【解析】
根据题意可得: ,在中,根据勾股定理可列出方程,解方程可得BF的长.
【详解】
解: ,
D是AC中点
折叠
设
在 中,
故选D.
本题考查了翻折问题,勾股定理的运用,关键是通过勾股定理列出方程.
4、C
【解析】
试题解析:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,AB=DC
∴△ADE∽△FCE
∴AD:FC=AE:FE=DE:CE
∵AD=3FC
∴AD:FC=3:1
∴FC:FB=1:4,故A错误;
∴CE:CD=1:4,故B错误;
∴CE:AB=CE:CD=1:4,故C正确;
∴AE:AF=3:4,故D错误.
故选C.
5、A
【解析】
二次根式有意义,被开方数为非负数,即x-2≥0,解不等式求x的取值范围.
【详解】
∵在实数范围内有意义,
∴x−2⩾0,解得x⩾2.
故选A.
此题考查二次根式有意义的条件,解题关键在于掌握运算法则
6、C
【解析】
中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,根据中心对称图形的概念求解即可.
【详解】
解:
(1)正方形是中心对称图形;
(2)等边三角形不是中心对称图形;
(3)长方形是中心对称图形;
(4)角不是中心对称图形;
(5)平行四边形是中心对称图形;
(6)圆是中心对称图形.
所以一共有4个图形是中心对称图形.
故选:C.
本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
7、B
【解析】
根据直角三角形斜边上的中线等于斜边的一半求出AC,再根据三角形中位线定理解答即可.
【详解】
解:∵AH⊥BC,E为AC边的中点,
∴AC=2HE=16,
∵D,F分别为BC,AB边的中点,
∴DF=AC=8,
故选:B.
本题考查的是三角形中位线定理、直角三角形斜边上中线的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
8、D
【解析】
解:由题意得:x﹣1≠0,解得x≠1.故选D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、﹣1.
【解析】
先根据方程有两个实数根,确定△≥0,可得k≤,由x1•x1=k1+1>0,可知x1、x1,同号,分情况讨论即可.
【详解】
∵x1+(3﹣1k)x+k1+1=0的两个实数根分别是x1、x1,
∴△=(3﹣1k)1﹣4×1×(k1+1)≥0,
9﹣11k+4k1﹣4k1﹣4≥0,
k≤,
∵x1•x1=k1+1>0,
∴x1、x1,同号,
分两种情况:
①当x1、x1同为正数时,x1+x1=7,
即1k﹣3=7,
k=5,
∵k≤,
∴k=5不符合题意,舍去,
②当x1、x1同为负数时,x1+x1=﹣7,
即1k﹣3=﹣7,
k=﹣1,
故答案为:﹣1.
本题考查了根与系数的关系和根的判别式.解此题时很多学生容易顺理成章的利用两根之积与和公式进行解答,解出k值,而忽略了限制性条件△≥0时k≤.
10、0
【解析】
根据数轴所示,a<0,b>0, b-a>0,依据开方运算的性质,即可求解.
【详解】
解:由图可知:a<0,b>0, b-a>0,
∴
故填:0
本题主要考查二次根式的性质和化简,实数与数轴,去绝对值号,关键在于求出b-a>0,即|b-a|=b-a.
11、(1);(2)猜想:
【解析】
(1)此题应先观察列举出的式子,可找出它们的一般规律,直接写出第④个等式即可;
(2)找出它们的一般规律,用含有n的式子表示出来,证明时,将等式左边被开方数进行通分,把被开方数的分子开方即可.
【详解】
(1)1)观察列举出的式子,可找出它们的一般规律,直接写出第④个等式:
故答案为:
(2)猜想:用含自然数的代数式可表示为:
证明:左边右边,所以猜想正确.
本题主要考查学生把特殊归纳到一般的能力及二次根式的化简,解题的关键是仔细观察,找出各式的内在联系解决问题.
12、45
【解析】
正方形的对角线和其中的两边长构成等腰直角三角形,故正方形的一条对角线和一边所成的角为45度.
【详解】
解:∵正方形的对角线和正方形的其中两条边构成等腰直角三角形
∴正方形的一条对角线和一边所成的角是45°.
故答案为:45°.
本题主要考查正方形对角线相等平分垂直的性质.
13、2cm≤h≤3cm
【解析】
解:根据直角三角形的勾股定理可知筷子最长在水里面的长度为13cm,最短为12cm,
则筷子露在外面部分的取值范围为:.
故答案为:2cm≤h≤3cm
本题主要考查的就是直角三角形的勾股定理的实际应用问题.在解决“竹竿过门”、立体图形中最大值的问题时,我们一般都会采用勾股定理来进行说明,从而得出答案.我们在解决在几何体中求最短距离的时候,我们一般也是将立体图形转化为平面图形,然后利用勾股定理来进行求解.
三、解答题(本大题共5个小题,共48分)
14、.
【解析】
首先将原分式化简,然后根据分式有意义的条件,求得的取值范围,再取值求解即可.
【详解】
解:原式,
的取值有
且且
且
当时,原式.
本题考查分式的化简求值,做题时应注意在给定的范围内取值,难度中等.
15、(1)y=x+1; (2)见解析.
【解析】
(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;
(2)过A、B作直线即可;
【详解】
(1)解:设一次函数的解析式是y=kx+b,
∵把A(0,1)、B(2,4)代入得:
解得:k=0.5,b=1,
∴一次函数的解析式是y=x+1.
(2)解:如图
本题考查用待定系数法求一次函数的解析式,一次函数的图象画法等知识的应用,解题关键是熟练掌握一次函数的性质.
16、(1)△ADC≌△CEB(2)AD=BE+DE
【解析】
(1)结论:△ADC≌△CEB.根据AAS证明即可;
(2)由三角形全等的性质即可解决问题;
【详解】
解:(1)结论:△ADC≌△CEB.
理由:∵AD⊥CE,BE⊥CE,
∴∠ACB=∠ADC=∠CEB=90°,
∴∠ACD+∠CAD=90°,∠ACD+∠ECB=90°,
∴∠CAD=∠ECB,
∵AC=CB,
∴△ADC≌△CEB(AAS).
(2)结论:AD=BE+DE.
理由:∵△ADC≌△CEB,
∴AD=CE,CD=BE,
∵CE=CD+DE,
∴AD=BE+DE.
本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.
17、(1);(2)见解析;(3)1.
【解析】
(1)由三角形中位线定理得出DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,得出△DEF的面积=△ABC的面积=即可;
(2)连接BD,证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD,FG∥BD,FG=BD,得出EH∥FG,EH=FG,即可得出结论;
(3)证出EH是△ABD的中位线,FG是△BCD的中位线,由三角形中位线定理得出EH∥BD,EH=BD= ,FG∥BD,FG=BD,得出EH∥FG,EH=FG,证出四边形EFGH是平行四边形,同理:EF∥AC,EF=AC=2,证出EH⊥EF,得出四边形EFGH是矩形,即可得出结果.
【详解】
(1)解:∵D、E、F分别是△ABC三边的中点,
则有DF∥BC,且DF=BC,△ADF≌△DBE≌△FEC≌△EFD,
∴△DEF的面积=△ABC的面积=;
故答案为;
(2)证明:连接BD,如图2所示:
∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形;
(3)解:∵E、F、G、H分别是AB、BC、CD、AD的中点,
∴EH是△ABD的中位线,FG是△BCD的中位线,
∴EH∥BD,EH=BD=,FG∥BD,FG=BD,
∴EH∥FG,EH=FG,
∴四边形EFGH是平行四边形,
同理:EF∥AC,EF=AC=2,
∵AC⊥BD,
∴EH⊥EF,
∴四边形EFGH是矩形,
∴四边形EFGH的面积=EH×EF=×2=1.
故答案为(1);(2)见解析;(3)1.
本题是四边形综合题目,考查三角形中位线定理、平行四边形的判定、矩形的判定与性质等知识;熟练掌握三角形中位线定理,证明四边形EFGH是平行四边形是解题的关键.
18、(1)20;(2),; (3)即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地).
【解析】
(1)因为汽车和摩托车分别从A,B两地去同一城市,从y轴上可看出A,B两地相距20km;
(2)根据图象可知,摩托车4小时行驶160千米,汽车3小时行驶180千米,利用速度=路程÷时间即可分别求出摩托车和汽车的行驶速度;
(3)分别求出摩托车和汽车离A地的路程y(km)随时间x(h)变化的函数解析式,再将它们联立组成方程组,解方程组得到点P的坐标,然后指出点P的实际意义.
【详解】
解:(1)由图象可知,A,B两地相距20km.
故填:20;
(2)根据图像汽车的速度为
摩托车的速度为
(3)设汽车行驶图像对应的一次函数的表达式为.根据题意,把已知的两点
坐标和代入,
解得,.
这个一次函数表达式为
同理解得摩托车对应的一次函数的表达式为
由题意解方程组
得,
即,的实际意义为出发1小时后汽车和摩托车在距离地的地点相遇.(或距离地)
本题考查了一次函数的应用,一次函数解析式的确定,路程、速度与时间关系的应用,坐标确定位置,两直线的交点坐标求法,以及函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.25
【解析】
设小路的宽度为,根据图形所示,用表示出小路的面积,由小路面积为80平方米,求出未知数.
【详解】
设小路的宽度为,由题意和图示可知,小路的面积为
,解一元二次方程,由,可得.
本题综合考查一元二次方程的列法和求解,这类实际应用的题目,关键是要结合题意和图示,列对方程.
20、(0,7)或(0,-7)
【解析】
点P在y轴上,分两种情况:正方向和负方向,即可得出点P的坐标为(0,7)或(0,-7).
【详解】
∵点P在y轴上,分两种情况:正方向和负方向,点P到原点的距离为7
∴点P的坐标为(0,7)或(0,-7).
此题主要考查平面直角坐标系中点的坐标,只告知点到原点的距离,要分两种情况,不要遗漏.
21、1
【解析】
由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值,由三角形中位线定理求出OD,即可得出DE的最小值.
【详解】
解:∵,,
根据勾股定理得,
∵四边形是平行四边形,
,
∴当取最小值时,线段最短,即时最短,
是的中位线,
,
,
故答案为:1.
本题考查了平行四边形的性质,勾股定理以及垂线段最短,此题难度适中,注意掌握数形结合思想的应用.
22、1
【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.
【详解】
方程两边都乘(x-2),得
1+(x-2)=k
∵原方程有增根,
∴最简公分母x-2=0,即增根是x=2,
把x=2代入整式方程,得k=1.
故答案为1.
增根问题可按如下步骤进行:
①根据最简公分母确定增根的值;
②化分式方程为整式方程;
③把增根代入整式方程即可求得相关字母的值.
23、;
【解析】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.
【详解】
观察图象,分析函数图象随增大而减小的,说明向x轴的正方向移动,y成下降趋势.因此可分析的的图象随着随增大而减小的.
故答案为
本题主要考查一次函数的单调性,当k>0是,随增大而增大,当k
相关试卷
这是一份北京十一中学分校2024年九上数学开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北京东城二中学2024-2025学年九年级数学第一学期开学达标检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届北京市通州区数学九年级第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。