安徽省舒城县2024年九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)(2016广西贵港市)式子在实数范围内有意义,则x的取值范围是( )
A.x<1B.x≤1C.x>1D.x≥1
2、(4分)如果等边三角形的边长为4,那么等边三角形的中位线长为
A.B.4C.6 D.8
3、(4分)如果分式的值为零,则a的值为( )
A.±1B.2C.﹣2D.以上全不对
4、(4分)某校为了了解学生在校午餐所需的时间,抽查了 20 名同学在校午餐所需的时间,获得如 下数据(单位:分):10,12,15,10,1,18,19,18,20,34,22,25,20,18,18,20,15,1,21,1.若将这些数据分为 5组,则组距是( )
A.4 分B.5 分C.6 分D.7 分
5、(4分)若代数式在实数范围内有意义,则x的取值范为是( )
A.x≥-2B.x>-2C.x≥2D.x≤2
6、(4分)如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,则点C的纵坐标y与x的函数解析式是( )
A.y=xB.y=1﹣xC.y=x+1D.y=x﹣1
7、(4分)如图,在△ABC 中,∠BAC=90°,∠ABC=2∠C,BE 平分∠ABC 交 AC 于 E,AD⊥BE 于 D,下列结论:①AC﹣BE=AE;②点 E 在线段 BC 的垂直平分线上;③∠DAE=∠C;④BC=4AD,其中正确的个数有( )
A.1 个B.2 个C.3 个D.4 个
8、(4分)如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是( )
A.甲B.乙
C.甲、乙的成绩一样稳定D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.
10、(4分)如图,在△ABC中,AB=3cm,BC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于_______cm.
11、(4分)已知线段AB=100m,C是线段AB的黄金分割点,则线段AC的长约为。(结果保留一位小数)
12、(4分)在△ABC中,AB=17cm,AC=10cm,BC边上的高等于8cm,则BC的长为_____cm.
13、(4分)若一元二次方程有两个不相同的实数根,则实数的取值范围________.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了积极响应国家新农村建设,某市镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为800米,假使宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:
(1)请问村庄能否听到宣传,并说明理由;
(2)如果能听到,已知宣讲车的速度是每分钟300米,那么村庄总共能听到多长时间的宣传?
15、(8分)已知直线的图象经过点和点
(1)求的值;
(2)求关于的方程的解
(3)若、为直线上两点,且,试比较、的大小
16、(8分)如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF,请你添加一个条件(不需再添加任何线段或字母),使之能推出四边形ABCD为平行四边形,请证明.你添加的条件是 .
17、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
(1)求的度数.
(2)若,则平行四边形的周长是多少?
18、(10分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则的大小为________.
20、(4分)一次函数y=kx+3的图象如图所示,则方程kx+3=0的解为__________.
21、(4分)直线过第_________象限,且随的增大而_________.
22、(4分)某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为______米.
23、(4分)如图,平行四边形的对角线相交于点,且,平行四边形的周长为8,则的周长为______.
二、解答题(本大题共3个小题,共30分)
24、(8分)某商贩出售一批进价为l元的钥匙扣,在销售过程中发现钥匙扣的日销售单价x(元)与日销售量y(个)之间有如下关系:
(1)根据表中数据在平面直角坐标系中,描出实数对(x,y)对应的点;
(2)猜想并确定y与x的关系式,并在直角坐标系中画出x>0时的图像;
(3)设销售钥匙扣的利润为T元,试求出T与x之间的函数关系式:若商贩在钥匙扣售价不超过8元的前提下要获得最大利润,试求销售价x和最大利润T.
25、(10分)如图平面直角坐标系中,点,在轴上,,点在轴上方,,,线段交轴于点,,连接,平分,过点作交于.
(1)点的坐标为 .
(2)将沿线段向右平移得,当点与重合时停止运动,记与的重叠部分面积为,点为线段上一动点,当时,求的最小值;
(3)当移动到点与重合时,将绕点旋转一周,旋转过程中,直线分别与直线、直线交于点、点,作点关于直线的对称点,连接、、.当为直角三角形时,直接写出线段的长.
26、(12分)化简:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
依题意得: ,解得x>1,
故选C.
2、A
【解析】
试题分析:根据三角形的中位线等于第三边一半的性质,得这个等边三角形的中位线长为2。故选A。
3、B
【解析】
根据分式的值为零的条件可得:|a|﹣1=2且a+1≠2,从而可求得a的值.
【详解】
解:由题意得:|a|﹣1=2且a+1≠2,
解得:a=1.
故选B.
此题主要考查了分式的值为零的条件,分式的值为零需同时具备两个条件:(1)分子为2;(1)分母不为2.这两个条件缺一不可.
4、B
【解析】
找出20个数据的最大值与最小值,求出它们的差,再除以5即得结果.
【详解】
解:根据题意得:(34-10)÷5=4.8.
即组距为5分.
故选B.
本题考查了频数分布表的相关知识,弄清题意,掌握求组距的方法是解题的关键.
5、C
【解析】
试题分析:根据二次根式的意义,x-2≥0,解得x≥2.
故选C.
考点:二次根式的意义.
6、C
【解析】
过点C作CE⊥y轴于点E,只要证明△CEA≌△AOB(AAS),即可解决问题;
【详解】
解:过点C作CE⊥y轴于点E.
∵∠CEA=∠CAB=∠AOB=90°,
∴∠EAC+∠OAB=90°,∠OAB+∠OBA=90°,
∴∠EAC=∠ABO,
∵AC=AB,
∴△CEA≌△AOB(AAS),
∴EA=OB=x,CE=OA=1,
∵C的纵坐标为y,OE=OA+AD=1+x,
∴y=x+1.
故选:C.
本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
7、D
【解析】
①∵BE平分∠ABC,
∴∠CBE=∠ABC,
∵∠ABC=2∠C,
∴∠EBC=∠C,
∴BE=CE,
∴AC-BE=AC-CE=AE;(①正确)
②∵BE=CE,
∴点E在线段BC的垂直平分线上;(②正确)
③∵∠BAC=90°,∠ABC=2∠C,
∴∠ABC=60°,∠C=30°,
∵BE=CE,
∴∠EBC=∠C=30°,
∴∠BEA=∠EBC+∠C=60°,
又∵∠BAC=90°,AD⊥BE,
∴∠DAE=∠ABE=30°,
∴∠DAE=∠C;(③正确)
④∠ABE=30°,AD⊥BE,
∴AB=2AD,
∵∠BAC=90°,∠C=30°,
∴BC=2AB,
∴BC=4AD.(④正确)
综上,正确的结论有4个,故选D.
点睛:此题考查了等腰三角形的性质与判定、线段垂直平分线的性质以及30°角直角三角形的性质.此题难度适中,注意数形结合思想的应用.
8、A
【解析】
观察图象可知:甲的波动较小,成绩较稳定.
【详解】
解:从图得到,甲的波动较小,甲的成绩稳定.
故选:A.
本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、y=-2x.
【解析】
利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。
【详解】
将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x
将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,
故答案为y=-2x.
本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。
10、8
【解析】
由折叠的性质知,AE=CE,
∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+5=8cm.
11、61.8m或38.2m
【解析】由于C为线段AB=100cm的黄金分割点,
则AC=100×61.8m
或AC=100-.
12、9或1
【解析】
利用勾股定理列式求出BD、CD,再分点D在边BC上和在CB的延长线上两种情况求出BC的长度.
【详解】
解:过点A作AD⊥BC于D,
由勾股定理得,BD==15(cm),
CD==6(cm),
如图1,BC=CD+BD=1(cm),
如图2,BC=BD﹣CD=9(cm),
故答案为:9或1.
本题考查了勾股定理,作辅助线构造出直角三角形是解题的关键,难点在于要分情况讨论.
13、且
【解析】
利用一元二次方程的定义和判别式的意义得到m≠1且△=(-2)2-4m>1,然后求出两不等式的公共部分即可.
【详解】
解:根据题意得m≠1且△=(-2)2-4m>1,
解得m<1且m≠1.
故答案为:m<1且m≠1.
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
三、解答题(本大题共5个小题,共48分)
14、(1)村庄能听到宣传. 理由见解析;(2)村庄总共能听到4分钟的宣传.
【解析】
(1)根据题意村庄A到公路MN的距离为800米<1000米,即可解答
(2)假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响
【详解】
解:(1)村庄能听到宣传.
理由:因为村庄A到公路MN的距离为800米<1000米,所以村庄能听到宣传
(2)如图,假设当宣讲车行驶到P点开始影响村庄,行驶Q点结束对村庄的影响,利用勾股定理进行计算即可解答
则AP=AQ=1000米,AB=800米.
∴BP=BQ==600米.
∴PQ=1200米.
、∴影响村庄的时间为:1200÷300=4(分钟).
∴村庄总共能听到4分钟的宣传.
此题考查解直角三角形,利用勾股定理进行计算是解题关键
15、(1)b=1;(2);(3).
【解析】
(1)将直线经过的两点代入原直线,联立二元一次方程组即可求得b值;
(2)求出k值,解一元一次方程即可;
(3)根据k的大小判断直线是y随x的增大而增大的,由此可知、的大小.
【详解】
解:(1)将(2,4),(-2,-2)代入直线得到:
,
解得:,
∴b=1;
(2)已知,b=1,
令,
解得,
∴关于的方程的解是;
(3)由于>0,可知直线是y随x的增大而增大的,
∵,
∴<.
本题考查一次函数表达式,增减性,解题时要注意理解一次函数与方程的关系.
16、条件是:∠F=∠CDE,理由见解析.
【解析】
由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
【详解】
条件是:∠F=∠CDE,
理由如下:
∵∠F=∠CDE
∴CD∥AF
在△DEC与△FEB中,
,
∴△DEC≌△FEB
∴DC=BF,
∵AB=BF
∴DC=AB
∴四边形ABCD为平行四边形
故答案为:∠F=∠CDE.
此题考查平行四边形的判定,全等三角形的判定与性质,解题关键在于证明△DEC≌△FEB
17、(1);(2)平行四边形的周长是.
【解析】
(1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
(2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
【详解】
解:(1) ∵四边形是平行四边形
又∵平分和
.
∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
(2)在中,.
又
,同理:
∵平行四边形中,,
∴平行四边形的周长是.
本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
18、现在每天加固长度为150米
【解析】
设原计划每天加固的长度是x米,则现在每天加固的长度是x(1+50%)=x米,可由题意列出一个等量关系:完成此段加固工程所需天数将比原计划缩短5天,列出方程,求出结果.
【详解】
解:设原计划每天加固长度为x米,则现在每天加固长度为1.5x米,
,解得,经检验,是此分式方程的解.
本题考查分式方程的运用,熟练掌握计算法则是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、40°
【解析】
根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.
【详解】
根据旋转的性质,可得:AB=AD,∠BAD=100°,
∴∠B=∠ADB=×(180°−100°)=40°.
故填:40°.
本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B的度数是解题的关键.
20、x=-1
【解析】
观察图象,根据图象与x轴的交点解答即可.
【详解】
∵一次函数y=kx+1的图象与x轴的交点坐标是(-1,0),
∴kx+1=0的解是x= -1.
故答案为:x= -1.
本题考查了一次函数与一元一次方程,解题的关键是根据交点坐标得出kx+1=0.
21、【解析】
根据一次函数的性质解答即可.
【详解】
解:∵-2<0,1>0,
∴直线过第一、二、四象限,且随的增大而减小,
故答案为:一、二、四;减小.
本题考查了一次函数的性质,熟知一次函数、为常数,是一条直线,当,图象经过第一、三象限,随的增大而增大;当,图象经过第二、四象限,随的增大而减小是解答此题的关键.
22、1×10-1
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:=1×10-1.
故答案为:1×10-1.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
23、4
【解析】
由平行四边形ABCD的对角线相交于点O,,根据线段垂直平分线的性质,可得AM=CM,又由平行四边形ABCD的周长为8,可得AD+CD的长,继而可得△CDE的周长等于AD+CD.
【详解】
∵四边形ABCD是平行四边形
∴OB=OD,AB=CD,AD=BC
∵平行四边形ABCD的周长为8
∴AD+CD=4
∵
∴AM=CM
∴△CDE的周长为:CD+CM+DM=CD+AM+DM=AD+CD=4.
故答案为:4
本题主要考查了平行四边形的性质,线段垂直平分线的性质。
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2),见解析;(3),,(元).
【解析】
(1)根据已知各点坐标进而在坐标系中描出即可;
(2)利用各点坐标乘积不变进而得出函数解析式,再画图象;
(3)利用利润=销量×(每件利润),进而得出答案.
【详解】
解:(1)如图:
(2)因为各点坐标xy乘积不变,猜想y与x为形式的反比例函数,
由题提供数据可知固定k值为24,
所以函数表达式为:,
连线如图:
(3)利润 = 销量 ×(每件利润),
利润为T,销量为y,由(2)知,
每件售价为1,则每件利润为x-1,
所以,
当最大时,最小,而此时最大,
根据题意,钥匙扣售价不超过8元,
所以时,(元).
此题主要考查了反比例函数的应用,正确利用反比例函数增减性得出函数最值是解题关键.
25、(1)C(3,3);(3)最小值为3+3;(3)D3H的值为3-3或3+3或1-1或1+1.
【解析】
(1)想办法求出A,D,B的坐标,求出直线AC,BC的解析式,构建方程组即可解决问题.
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.利用三角形的面积公式求出点D坐标,再证明PH=PB,把问题转化为垂线段最短即可解决问题.
(3)在旋转过程中,符号条件的△GD3H有8种情形,分别画出图形一一求解即可.
【详解】
(1)如图1中,
在Rt△AOD中,∵∠AOD=93°,∠OAD=33°,OD=3,
∴OA=OD=6,∠ADO=63°,
∴∠ODC=133°,
∵BD平分∠ODC,
∴∠ODB=∠ODC=63°,
∴∠DBO=∠DAO=33°,
∴DA=DB=1,OA=OB=6,
∴A(-6,3),D(3,3),B(6,3),
∴直线AC的解析式为y=x+3,
∵AC⊥BC,
∴直线BC的解析式为y=-x+6,
由 ,解得,
∴C(3,3).
(3)如图3中,设BD交O′D′于G,交A′D′于F.作PH⊥OB于H.
∵∠FD′G=∠D′GF=63°,
∴△D′FG是等边三角形,
∵S△D′FG= ,
∴D′G= ,
∴DD′=GD′=3,
∴D′(3,3),
∵C(3,3),
∴CD′==3,
在Rt△PHB中,∵∠PHB=93°,∠PBH=33°,
∴PH=PB,
∴CD'+D'P+PB=3+D′P+PH≤3+D′O′=3+3,
∴CD'+D'P+PB的最小值为3+3.
(3)如图3-1中,当D3H⊥GH时,连接ED3.
∵ED=ED3,EG=EG.DG=D3G,
∴△EDG≌△ED3G(SSS),
∴∠EDG=∠ED3G=33°,∠DEG=∠D3EG,
∵∠DEB=133°,∠A′EO′=63°,
∴∠DEG+∠BEO′=63°,
∵∠D3EG+∠D3EO′=63°,
∴∠D3EO′=∠BEO′,
∵ED3=EB,E=EH,
∴△EO′D3≌△EO′B(SAS),
∴∠ED3H=∠EBH=33°,HD3=HB,
∴∠CD3H=63°,
∵∠D3HG=93°,
∴∠D3GH=33°,设HD3=BH=x,则DG=GD3=3x,GH=x,
∵DB=1,
∴3x+x+x=1,
∴x=3-3.
如图3-3中,当∠D3GH=93°时,同法可证∠D3HG=33°,易证四边形DED3H是等腰梯形,
∵DE=ED3=DH=1,可得D3H=1+3×1×cs33°=1+1.
如图3-3中,当D3H⊥GH时,同法可证:∠D3GH=33°,
在△EHD3中,由∠D3HE=15°,∠HD3E=33°,ED3=1,可得D3H=1× ,
如图3-1中,当DG⊥GH时,同法可得∠D3HG=33°,
设DG=GD3=x,则HD3=BH=3x,GH=x,
∴3x+x=1,
∴x=3-3,
∴D3H=3x=1-1.
如图3-5中,当D3H⊥GH时,同法可得D3H=3-3.
如图3-6中,当DGG⊥GH时,同法可得D3H=1+1.
如图3-7中,如图当D3H⊥HG时,同法可得D3H=3+3.
如图3-8中,当D3G⊥GH时,同法可得HD3=1-1.
综上所述,满足条件的D3H的值为3-3或3+3或1-1或1+1.
此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.
26、
【解析】
先二次根式化性质和分母有理化和把二次根式为最简二次根式,利用完全平方公式将括号展开,然后合并同类二次根式即可;
【详解】
解:
=
=.
本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.
题号
一
二
三
四
五
总分
得分
批阅人
安徽省石台县2024年九上数学开学质量跟踪监视模拟试题【含答案】: 这是一份安徽省石台县2024年九上数学开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省固镇县2024年数学九上开学质量跟踪监视试题【含答案】: 这是一份安徽省固镇县2024年数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】: 这是一份2024年安徽省桐城市九上数学开学质量跟踪监视试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。