|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】
    立即下载
    加入资料篮
    安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】01
    安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】02
    安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】

    展开
    这是一份安徽省明光市泊岗中学2025届九上数学开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列命题正确的是( )
    A.对角线互相垂直的四边形是菱形
    B.一组对边相等,另一组对边平行的四边形是平行四边形
    C.对角线相等的四边形是矩形
    D.对角线互相垂直平分且相等的四边形是正方形
    2、(4分)如图,ABCD的对角线、交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①⊥;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()
    A.1个;B.2个;
    C.3个;D.4个.
    3、(4分)小明随机写了一串数字“1,2,3,3,2,1,1,1,2,2,3,3,”,则数字3出现的频数( )
    A.6B.5C.4D.3
    4、(4分)如图,是上一点,交于点,,,若,,则的长是( )
    A.0.5B.1C.1.5D.2
    5、(4分)在平面直角坐标系中,点P(﹣3,2)在( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    6、(4分)小明用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的函数关系式是( )
    A.B.C.D.
    7、(4分)若,则下列不等式不成立的是( ).
    A.B.C.D.
    8、(4分)若分式口,的运算结果为x(x≠0),则在“口”中添加的运算符号为( )
    A.+或xB.-或÷C.+或÷D.-或x
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)以1,1,为边长的三角形是___________三角形.
    10、(4分)如图,垂直平分线段于点的平分线交于点,连结,则∠AEC的度数是 .
    11、(4分)计算: =_____.
    12、(4分)因式分解: .
    13、(4分)如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.
    (1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.
    15、(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6 cm,AC=10 cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).
    (1)求证:四边形ACFD是平行四边形.
    (2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?
    (3)将Rt△ABC向左平移4 cm,求四边形DHCF的面积.
    16、(8分)已知:在平行四边形ABCD中,AM=CN.求证:四边形MBND是平行四边形.
    17、(10分)如图,在△ABC中,AB=13,BC=21,AD=12,且AD⊥BC,垂足为点D,求AC的长.
    18、(10分)(1)计算:
    (2)计算:
    (3)求不等式组的整数解.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)中国象棋在中国有着三千多年的历史,它难易适中,趣味性强,变化丰富细腻,棋盘棋子文字都体现了中国文化.如图,如果所在位置的坐标为(﹣1,﹣1),所在位置的坐标为(2,﹣1),那么,所在位置的坐标为__________.
    20、(4分)秀水村的耕地面积是平方米,这个村的人均占地面积(单位:平方米)随这个村人数的变化而变化.则与的函数解析式为______.
    21、(4分)今年我市有5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个调查中样本容量是______.
    22、(4分)如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为_________.
    23、(4分)已知方程ax2+7x﹣2=0的一个根是﹣2,则a的值是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,现有一张边长为8的正方形纸片,点为边上的一点(不与点、点重合),将正方形纸片折叠,使点落在处,点落在处,交于,折痕为,连结、.

    (1)求证:;
    (2)求证:;
    (3)当时,求的长.
    25、(10分)某中学为了预防流行性感冒,对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量与时间成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物6min燃毕,此时室内空气中每立方米的含药量为4mg,
    (1)写出药物燃烧前后,y与x之间的函数表达式;
    (2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少需要经过多少分钟,学生方能回到教室?
    (3)研究表明,当空气中每立方米的含药量不低于2mg且持续时间不低于9min时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?
    26、(12分)某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元,已知购买一个种品牌的足球比购买一个种品牌的足球少30元.
    (1)求购买一个种品牌、一个种品牌的足球各需多少钱.
    (2)学校为了响应“足球进校园”的号召,决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整,品牌的足球售价上涨4元,品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的,且保证品牌足球不少于23个,则学校有几种购买方案?
    (3)求出学校在第二次购买活动中最多需要多少钱?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;
    B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;
    C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;
    D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.
    故选D.
    考点:命题与定理.
    2、C
    【解析】
    根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.
    【详解】
    解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.
    ①∵AC⊥BD,∴新的四边形成为矩形,符合条件;
    ②∵四边形ABCD是平行四边形,∴AO=OC,BO=DO.
    ∵C△ABO=C△CBO,∴AB=BC.
    根据等腰三角形的性质可知BO⊥AC,∴BD⊥AC.所以新的四边形成为矩形,符合条件;
    ③∵四边形ABCD是平行四边形,∴∠CBO=∠ADO.
    ∵∠DAO=∠CBO,∴∠ADO=∠DAO.
    ∴AO=OD.
    ∴AC=BD,∴四边形ABCD是矩形,连接各边中点得到的新四边形是菱形,不符合条件;
    ④∵∠DAO=∠BAO,BO=DO,
    ∴AO⊥BD,即平行四边形ABCD的对角线互相垂直,
    ∴新四边形是矩形.符合条件.
    所以①②④符合条件.
    故选:C.
    本题主要考查矩形的判定、平行四边形的性质、三角形中位线的性质.
    3、C
    【解析】
    根据频数的定义可直接得出答案
    【详解】
    解:∵该串数字中,数字3出现了1次,
    ∴数字3出现的频数为1.
    故选:C.
    本题是对频数定义的考查,即频数是表示一组数据中符合条件的对象出现的次数.
    4、B
    【解析】
    根据平行线的性质,得出,,根据全等三角形的判定,得出,根据全等三角形的性质,得出,根据,,即可求线段的长.
    【详解】
    ∵,
    ∴,,
    在和中,
    ∴,
    ∴,
    ∵,
    ∴.
    故选:B.
    本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定是解此题的关键.
    5、B
    【解析】
    根据各象限的点的坐标的符号特征判断即可.
    【详解】
    ∵-3<0,2>0,
    ∴点P(﹣3,2)在第二象限,
    故选:B.
    本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.
    6、D
    【解析】
    剩余的钱=原有的钱-用去的钱,可列出函数关系式.
    【详解】
    剩余的钱Q(元)与买这种笔记本的本数x之间的关系为:Q=50−8x.
    故选D
    此题考查根据实际问题列一次函数关系式,解题关键在于列出方程
    7、D
    【解析】
    试题分析:A、a<0,则a是负数,a+5<a+7可以看作5<7两边同时加上a,故A选项正确;
    B、5a>7a可以看作5<7两边同时乘以一个负数a,不等号方向改变,故B选项正确;
    C、5﹣a<7﹣a是不等号两边同时加上﹣a,不等号不变,故C选项正确;
    D、a<0,>可以看作>两边同时乘以一个负数a,不等号方向改变,故D选项错误.
    故选D.
    考点:不等式的性质.
    8、C
    【解析】
    分别将运算代入,根据分式的运算法则即可求出答案.
    【详解】
    综上,在“口”中添加的运算符号为或
    故选:C.
    本题考查了分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、等腰直角
    【解析】
    根据等腰三角形和直角三角形的性质以及判定定理进行判断即可.
    【详解】

    ∴是等腰三角形

    ∴是直角三角形
    ∴该三角形是等腰直角三角形
    故答案为:等腰直角.
    本题考查了等腰三角形和直角三角形的证明问题,掌握等腰三角形和直角三角形的性质以及判定定理是解题的关键.
    10、115°
    【解析】
    试题分析:根据垂直平分线的性质可得BE=CE,即可得到∠EBC=∠ECB=25°,再根据三角形外角的性质即可求得∠AEC=∠EDC+∠ECB=115°.
    考点:角平分线的性质,垂直平分线的性质,三角形外角的性质
    11、
    【解析】
    =
    12、
    【解析】
    解:=;
    故答案为
    13、
    【解析】
    连接AW,如图所示:
    根据旋转的性质得:AD=AB′,∠DAB′=60°,
    在Rt△ADW和Rt△AB′W中,
    ,
    ∴Rt△ADW≌Rt△AB′W(HL),
    ∴∠B′AW=∠DAW=
    又AD=AB′=1,
    在RT△ADW中,tan∠DAW=,即tan30°=WD
    解得:WD=
    ∴,
    则公共部分的面积为:,
    故答案为.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析;(1)
    【解析】
    (1)因为∠1=∠1,所以BO=CO,1BO=1CO,又因为四边形ABCD是平行四边形,所以AO=CO,BO=OD,则可证AC=BD,根据对角线相等的平行四边形是矩形即可判定;
    (1)在△BOC中,∠BOC=110°,则∠1=∠1=30°,AC=1AB,根据勾股定理可求得BC的值,则四边形ABCD的面积可求.
    【详解】
    (1)证明:∵∠1=∠1,
    ∴BO=CO,即1BO=1CO.
    ∵四边形ABCD是平行四边形,
    ∴AO=CO,BO=OD,
    ∴AC=1CO,BD=1BO,
    ∴AC=BD.
    ∵四边形ABCD是平行四边形,
    ∴四边形ABCD是矩形;
    (1)在△BOC中,∵∠BOC=110°,
    ∴∠1=∠1=(180°-110°)÷1=30°,
    ∴在Rt△ABC中,AC=1AB=1×4=8(cm),
    ∴BC=(cm).
    ∴四边形ABCD的面积=4(cm1)
    此题把矩形的判定、勾股定理和平行四边形的性质结合求解.考查学生综合运用数学知识的能力.解决本题的关键是读懂题意,得到相应的四边形的各边之间的关系.
    15、(1)见解析;(2)将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)
    【解析】
    (1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24 cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.
    【详解】
    (1)证明:∵四边形ACFD是由Rt△ABC平移形成的,
    ∴AD∥CF,AC∥DF.
    ∴四边形ACFD为平行四边形.
    (2)解:由题易得BC==8(cm),△ABC的面积=24 cm2.
    要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2 cm,
    ∴将Rt△ABC向左(或右)平移2 cm,可使四边形ACFD的面积等于△ABC的面积的一半.
    (3)解:将Rt△ABC向左平移4 cm,
    则BE=AD=4 cm.
    又∵BC=8 cm,∴CE=4 cm=AD.
    由(1)知四边形ACFD是平行四边形,
    ∴AD∥BF.
    ∴∠HAD=∠HCE.
    又∵∠DHA=∠EHC,
    ∴△DHA≌△EHC(AAS).
    ∴DH=HE=DE=AB=3 cm.
    ∴S△HEC=HE·EC=6 cm2.
    ∵△ABC≌△DEF,
    ∴S△ABC=SDEF.
    由(2)知S△ABC=24 cm2,
    ∴S△DEF=24 cm2.
    ∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).
    本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.
    16、证明见解析.
    【解析】
    可通过证明DM∥BN,DM=BN来说明四边形是平行四边形,也可通过DM=BN,BM=DN来说明四边形是平行四边形.
    【详解】
    (法一)∵四边形ABCD是平行四边形,
    ∴AD∥CB,AD=CB.
    ∵AM=CN,
    ∴AD﹣AM=CB﹣CN,
    即DM=BN.
    又∵DM∥BN,
    ∴四边形MBND是平行四边形.
    (法二)∵四边形ABCD是平行四边形,
    ∴∠A=∠C,AB=CD,
    在△AMN和△CND中,
    又∵,
    ∴△AMN≌△CND,
    ∴BM=DN.
    ∵AM=CN,
    ∴AD﹣AM=CB﹣CN,
    即DM=BN.
    又∵BM=DN,
    ∴四边形MBND是平行四边形.
    点睛:本题考查了平行四边形的性质和判定,题目难度不大.
    17、20.
    【解析】
    依据勾股定理,即可得到BD和CD的长,进而得出AC.
    【详解】
    ∵AB=13,AD=12,AD⊥BC,
    ∴,
    ∵BC=21,
    ∴CD=BC-BD=16,
    ∴.
    本题主要考查勾股定理,解题的关键是熟练掌握勾股定理公式a2+b2=c2及其变形.
    18、(1);(2);(3)不等式组的整数解是0.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用完全平方公式和平方差公式计算;
    (3)分别解两个不等式得到和x<1,然后根据大小小大取中间确定不等式组的解集,从而得到不等式组的整数解
    【详解】
    解:(1)原式;
    (2)原式;
    (3)
    解不等式①得,;
    解不等式②得,,
    ∴不等式组的解集为,
    ∴不等式组的整数解是0.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍,也考查了解不等式组.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(﹣3,2)
    【解析】
    由“士”的位置向右平移减1个单位,在向上平移1个单位,得
    所在位置的坐标为 (-3,2),
    故答案是:(-3,2).
    20、
    【解析】
    人均耕地面积即耕地总面积除以人数,y随着n的变化而变化,因此,n是自变量,y是因变量。
    【详解】
    根据题意可列出
    此题考查根据实际问题列反比例函数关系式,解题关键在于列出解析式
    21、1
    【解析】
    根据样本容量的定义:样本中个体的数目称为样本容量,即可求解.
    【详解】
    解:这个调查的样本是1名考生的数学成绩,故样本容量是1.
    故答案为1.
    本题考查样本容量,难度不大,熟练掌握样本容量的定义是顺利解题的关键.
    22、6
    【解析】
    先证明△AOE≌△COF,Rt△BFO≌Rt△BFC,再证明△OBC、△BEF是等边三角形即可求出答案.
    【详解】
    如图,连接BO,
    ∵四边形ABCD是矩形,
    ∴DC∥AB,∠DCB=90°
    ∴∠FCO=∠EAO
    在△AOE与△COF中,
    ∴△AOE≌△COF
    ∴OE=OF,OA=OC
    ∵BF=BE
    ∴BO⊥EF,∠BOF=90°
    ∵∠BEF=2∠BAC=∠CAB+∠AOE
    ∴∠EAO=∠EOA,
    ∴EA=EO=OF=FC=2
    在Rt△BFO与Rt△BFC中
    ∴Rt△BFO≌Rt△BFC
    ∴BO=BC
    在Rt△ABC中,∵AO=OC,
    ∴BO=AO=OC=BC
    ∴△BOC是等边三角形
    ∴∠BCO=60°,∠BAC=30°
    ∴∠FEB=2∠CAB=60°,
    ∵BE=BF
    ∴EB=EF=4
    ∴AB=AE+EB=2+4=6,
    故答案为6.
    本题考查的是全等三角形的性质与判定和等边三角形的判定与性质,能够充分调动所学知识是解题本题的关键.
    23、1
    【解析】
    根据一元二次方程的解的定义,将x=﹣2代入已知方程,通过一元一次方程来求a的值.
    【详解】
    解:根据题意知,x=﹣2满足方程ax2+7x﹣2=0,则1a﹣11﹣2=0,即1a﹣16=0,
    解得,a=1.
    故答案是:1.
    考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.
    二、解答题(本大题共3个小题,共30分)
    24、(1)证明见解析;(2)证明见解析;(3)PH=.
    【解析】
    (1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;
    (2)首先过B作BQ⊥PH,垂足为Q,易证得△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出AP+HC=PH.
    (3)首先设AE=x,则EP=8-x,由勾股定理可得:在Rt△AEP中,AE2+AP2=PE2,即可得方程:x2+22=(8-x)2,即可求得答案AE的长,易证得△DPH∽△AEP,然后由相似三角形的对应边成比例,求得答案.
    【详解】
    (1)证明:∵PE=BE,
    ∴∠EPB=∠EBP,
    又∵∠EPH=∠EBC=90°,
    ∴∠EPH-∠EPB=∠EBC-∠EBP.
    即∠BPH=∠PBC.
    又∵四边形ABCD为正方形
    ∴AD∥BC,
    ∴∠APB=∠PBC.
    ∴∠APB=∠BPH.
    (2)证明:过B作BQ⊥PH,垂足为Q,
    由(1)知,∠APB=∠BPH,
    在△ABP与△QBP中,

    ∴△ABP≌△QBP(AAS),
    ∴AP=QP,BA=BQ.
    又∵AB=BC,
    ∴BC=BQ.
    又∵∠C=∠BQH=90°,
    ∴△BCH和△BQH是直角三角形,
    在Rt△BCH与Rt△BQH中,

    ∴Rt△BCH≌Rt△BQH(HL),
    ∴CH=QH,
    ∴AP+HC=PH.
    (3)解:∵AP=2,
    ∴PD=AD-AP=8-2=6,
    设AE=x,则EP=8-x,
    在Rt△AEP中,AE2+AP2=PE2,
    即x2+22=(8-x)2,
    解得:x=,
    ∵∠A=∠D=∠ABC=90°,
    ∴∠AEP+∠APE=90°,
    由折叠的性质可得:∠EPG=∠ABC=90°,
    ∴∠APE+∠DPH=90°,
    ∴∠AEP=∠DPH,
    ∴△DPH∽△AEP,
    ∴,
    ∴,
    解得:DH=.
    ∴PH=
    此题属于四边形的综合题.考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理等知识.注意掌握折叠前后图形的对应关系、注意掌握方程思想的应用,注意准确作出辅助线是解此题的关键.
    25、(1)药物燃烧时y关于x的函数关系式为:;药物燃烧后y关于x的函数关系式为:;(2)至少需要15分钟后学生方能回到教室;(3)此次消毒有效.
    【解析】
    (1)药物燃烧时,设出y与x之间的解析式y=k1x,把点(6,4)代入即可;药物燃烧后,设出y与x之间的解析式,把点(6,4)代入即可;
    (2)把y=1.6代入反比例函数解析式,求出相应的x即可判断;
    (3)把y=2代入正比例函数解析式和反比例函数解析式,求出相应的x,两数之差与9进行比较,不小于9就有效.
    【详解】
    解:(1)设药物燃烧时y关于x的函数关系式为y=k1x (k1≠0),
    代入(6,4)得:4=6k1,解得:,
    ∴药物燃烧时y关于x的函数关系式为:;
    设药物燃烧后y关于x的函数关系式为,
    代入(6,4)得,解得:k2=24,
    ∴药物燃烧后y关于x的函数关系式为:;
    (2)将y=1.6代入,解得:x=15,
    所以从消毒开始,至少需要15分钟后学生方能回到教室;
    (3)把y=2代入,得:x=3,
    把y=2代入,得:x=12,
    ∵12−3=9,
    所以此次消毒有效.
    本题考查了一次函数和反比例函数的综合应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
    26、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,详见解析;(3)最多需要3150元.
    【解析】
    (1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及购买一个种品牌的足球比购买一个种品牌的足球少30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;
    (2)设第二次购买A种足球m个,则购买B种足球(50−m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;
    (3)分析第二次购买时,A、B两种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.
    【详解】
    解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,
    依题意得: ,解得:,
    答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;
    (2)设第二次购买A种足球m个,则购买B种足球(50−m)个,
    依题意得:,
    解得:25≤m≤1.
    故这次学校购买足球有三种方案:
    方案一:购买A种足球25个,B种足球25个;
    方案二:购买A种足球26个,B种足球24个;
    方案三:购买A种足球1个,B种足球23个.
    (3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),
    ∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多,
    ∴25×54+25×72=3150(元).
    答:学校在第二次购买活动中最多需要3150元.
    本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于x、y的二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式组;(3)确定花费最多的方案.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.
    题号





    总分
    得分
    相关试卷

    安徽省明光市泊岗中学2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份安徽省明光市泊岗中学2024-2025学年九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省明光市泊岗中学2023-2024学年数学九上期末调研模拟试题含答案: 这是一份安徽省明光市泊岗中学2023-2024学年数学九上期末调研模拟试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是,已知,方程的解是等内容,欢迎下载使用。

    安徽省明光市泊岗中学2023-2024学年数学九上期末达标测试试题含答案: 这是一份安徽省明光市泊岗中学2023-2024学年数学九上期末达标测试试题含答案,共7页。试卷主要包含了如图,中,,若,,则边的长是,某人沿着坡度为1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map