安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】
展开
这是一份安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)计算的结果是
A.﹣3B.3C.﹣9D.9
2、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:
则这四人中发挥最稳定的是( )
A.甲B.乙C.丙D.丁
3、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
A.B.C.D.
4、(4分)下列各组线段中,不能够组成直角三角形的是( )
A.6,8,10B.3,4,5C.4,5,6D.5,12,13
5、(4分)如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为( ).
A.B.1.5C.D.1.7
6、(4分)如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为( )
A.2B.3C.D.
7、(4分)某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是( )
A.中位数B.平均数C.众数D.方差
8、(4分)不列调查方式中,最合适的是( )
A.调查某品牌电脑的使用寿命,采用普查的方式
B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式
C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式
D.调查苏州地区初中学生的睡眠时间,采用普查的方式
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .
10、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.
11、(4分)不等式组的解集为x>2,则a的取值范围是_____________.
12、(4分)如图,已知直线y1=﹣x与y2=nx+4n图象交点的横坐标是﹣2,则关于x的不等式nx+4n>﹣x>0解集是_____.
13、(4分)如图,四边形是一块正方形场地,小华和小芳在边上取定一点,测量知,,这块场地的对角线长是________.
三、解答题(本大题共5个小题,共48分)
14、(12分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
小明说根据小东所得的数据可以求出CD的长度.
你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
15、(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.
(1)试求出纸箱中蓝色球的个数;
(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
16、(8分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
(1) ①依题意补全图形;②求证:BE⊥AC.
(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
17、(10分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)
(1)分别求出本周内甲、乙两种水果每天销售量的平均数;
(2 )哪种水果销售量比较稳定?
18、(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.
(1)求k的值;
(2)不等式的解集是________________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
20、(4分)外角和与内角和相等的平面多边形是_______________.
21、(4分)如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.
22、(4分)若分式方程 无解,则等于___________
23、(4分)已知,为实数,且满足,则_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.
25、(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
26、(12分)如图,将等边绕点顺时针旋转得到,的平分线交于点,连接、.
(1)求度数;
(2)求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
利用二次根式的性质进行化简即可.
【详解】
=|﹣3|=3.
故选B.
2、B
【解析】
分析:根据方差的意义解答.
详解:从方差看,乙的方差最小,发挥最稳定.
故选B.
点睛:考查方差的意义,方差越小,成绩越稳定.
3、B
【解析】
根据等腰三角形的性质得到根据垂直的性质得到
根据等量代换得到又即可得到
根据同角的余角相等即可得到.
【详解】
,
,
从而
是等腰三角形,
,
故选:B.
考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
4、C
【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
【详解】
A. 6+8=10,能构成直角三角形,故不符合题意;
B. 3+4=5,能构成直角三角形,故不符合题意;
C. 4+5≠6,不能构成直角三角形,故符合题意;
D. 5+12=13,能构成直角三角形,故不符合题意.
故选C.
此题考查勾股定理的逆定理,解题关键在于掌握运算公式.
5、A
【解析】
根据勾股定理求出OA的长,根据实数与数轴的知识解答.
【详解】
,
∴OA=,
则点A对应的数是,
故选A.
本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.
6、B
【解析】
由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。
【详解】
解:∵菱形ABCD的周长为24
∴AD=BD=24÷4=6,OB=OD
由∵∠DAB=60°
∴△DAB为等边三角形
又∵DH⊥AB
∴AH=HB
∴OH=AD=3
故答案为B.
本题考查了菱形的性质、等边三角形、三角形中位线的知识,考查知识点较多,提升了试题难度,但抓住双基,本题便不难。
7、C
【解析】
根据平均数、中位数、众数、方差的意义进行分析选择.
【详解】
解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.
既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,
故最值得关注的是众数.
故选:C.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
8、B
【解析】
本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
A. 调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;
B. 调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;
C. 要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;
D. 调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;
故选B
此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来
二、填空题(本大题共5个小题,每小题4分,共20分)
9、21
【解析】
10+7+4=21
10、1
【解析】
根据三角形的中位线定理解答即可.
【详解】
∵三角形的三条中位线的长分别是5cm、6cm、10cm,
∴三角形的三条边分别是10cm、12cm、20cm.
∴这个三角形的周长=10+12+20=1cm.
故答案是:1.
本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.
11、a≤2
【解析】
根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.
【详解】
由题意得a≤2.
本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).
12、﹣2<x<1
【解析】
观察图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>-x>1解集.
【详解】
解:观察图象可知:图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>﹣x>1解集,
∴﹣2<x<1,
故答案为﹣2<x<1.
本题考查一次函数与不等式、两直线相交或平行问题等知识,解题的关键是学会利用图象法解决自变量的取值范围问题.
13、40m
【解析】
先根据勾股定理求出BC,故可得到正方形对角线的长度.
【详解】
∵,
∴,
∴对角线AC=.
故答案为:40m.
此题主要考查利用勾股定理解直角三角形,解题的关键是熟知勾股定理的运用.
三、解答题(本大题共5个小题,共48分)
14、同意,CD=13 m.
【解析】
直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
【详解】
同意
连接BD,如图
∵AB=AD=5(m),∠A=60°
∴△ABD是等边三角形
∴BD=AB=5(m),∠ABD=60°
∴∠ABC=150°,
∴∠CBD=∠ABC-∠ABD=150°-60°=90°
在Rt△CBD中,BD=5(m),BC=12(m),
∴(m)
答:CD的长度为13m.
此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
15、(1)50;(2)2
【解析】
(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;
(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.
【详解】
(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)
(2)设小明放入红球x个.根据题意得:
解得:x=2(个).
经检验:x=2是所列方程的根.
答:小明放入的红球的个数为2.
本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.
16、(1)①见解析;②见解析;(2)
【解析】
(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
(2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.
【详解】
(1)①依题意补全图形,如图1所示.
②证明:连接CE,如图2所示.
∵四边形ABCD是正方形,
∴∠BCD=90°,AB=BC,
∴∠ACB=∠ACD=∠BCD=45°,
∵∠CMN=90°,CM=MN,
∴∠MCN=45°,
∴∠ACN=∠ACD+∠MCN=90°.
∵在Rt△ACN中,点E是AN中点,
∴AE=CE=AN.
∵AE=CE,AB=CB,
∴点B,E在AC的垂直平分线上,
∴BE垂直平分AC,
∴BE⊥AC.
(2)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
∵∠BDC=45°,∠DCN=45°,
∴BD∥CN,
∴四边形DFCN为梯形.
∵AB=1,
∴CF=DF=BD=,CN=,
∴S梯形DFCN=(DF+CN)•CF=(+)×=.
故答案为:.
此题考查正方形的性质,等腰直角三角形的性质,平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.根据题意画出图形,利用数形结合解决问题是关键.
17、(1),;(2)乙种水果销量比较稳定.
【解析】
(1)根据平均数的公式计算即可.
(2)根据方差公式计算,再根据方差的意义“方差越小越稳定”判断销售量哪家更稳定.
【详解】
(1),
(2)
,
,
,
所以乙种水果销量比较稳定.
本题考查了求平均数和方差,熟练掌握平均数和方差公式是解答本题的关键,
18、 (1) ;(2) x>3.
【解析】
(1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;
(2)根据函数图象可以直接写出不等式kx+2<的解集.
【详解】
(1),解得:
(2),解得:x>3
本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2
【解析】
分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
详解:∵点A的坐标为(2,4)且OA=AB,
∴O(0,0),B(4,0),C(6,-4),D(8,0),
2017÷8=252……1,
∴b==2.
点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
20、四边形
【解析】
设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
【详解】
设此多边形是n边形,由题意得:
解得
故答案为:四边形.
本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
21、6
【解析】
根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.
【详解】
根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;
当P在CD上时,三角形的面积不变,结合图2可得CD=3;
当P在AD上时,三角形的面积变小,结合图2可得AD=5;
过D作DE⊥AB于E,
∵AB∥CD,AB⊥BC,
∴四边形DEBC为矩形,
∴EB=CD=3,DE=BC=4,
∴AE=
∴AB=AE+EB=6.
此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.
22、
【解析】
先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
【详解】
解:,
去分母得:,
所以:,
因为:方程的增根是,
所以:此时,
故答案为:.
本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
23、4
【解析】
直接利用二次根式有意义的条件得出、的值,进而得出答案.
【详解】
、为实数,且满足,
,,
则.
故答案为:.
此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.
二、解答题(本大题共3个小题,共30分)
24、详见解析
【解析】
根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
【详解】
,
∴AC+CF=EF+CF
,
又,
,
,
,
,
,
∴四边形是平行四边形.
本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
25、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
【解析】
(1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
(2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
【详解】
(1)由旋转得:OC=OA=,∠AOC=135°,
过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
在Rt△OMC中,∠COM=45°,OC=,
∴OM=CM=1,
∴点C(1,1),代入y=得:k=1,
∴反比例函数的关系式为:y=,
答:反比例函数的关系式为:y=
(2)①当点E在第三象限反比例函数的图象上,如图1,图2,
∵点D在y轴上,AEDB是平行四边形,
∴AE∥DB,AE=BD,AE⊥OA,
当x=-时,y==-,
∴E(-,-)
∵B(0,-1),BD=AE=,
当点D在B的下方时,
∴D(0,-1-)
当点D在B的上方时,
∴D(0,-1+),
②当点E在第一象限反比例函数的图象上时,如图3,
过点E作EN⊥y轴,垂足为N,
∵ABED是平行四边形,
∴AB=DE,AB=DE,
∴∠ABO=∠EDO,
∴△AOB≌△END (AAS),
∴EN=OA=,DN=OB=1,
当x=时,代入y=得:y=,
∴E(,),
∴ON=,OD=ON+DN=1+,
∴D(0,1+)
考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.
26、(1) ;(2)证明见解析.
【解析】
(1)由等边三角形的性质可得,,由旋转的性质可得,,由等腰三角形的性质可求解;
(2)由“”可证,可得,即可证.
【详解】
解:(1)是等边三角形
,
等边绕点顺时针旋转得到
,,
,
(2)和是等边三角形
,
平分
,,,
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
题号
一
二
三
四
五
总分
得分
批阅人
选手
甲
乙
丙
丁
方差(s2)
0.020
0.019
0.021
0.022
品种 星期
一
二
三
四
五
六
日
甲
乙
相关试卷
这是一份安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。