终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】

    立即下载
    加入资料篮
    安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】第1页
    安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】第2页
    安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】

    展开

    这是一份安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)计算的结果是
    A.﹣3B.3C.﹣9D.9
    2、(4分)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2s,方差如下表:
    则这四人中发挥最稳定的是( )
    A.甲B.乙C.丙D.丁
    3、(4分)如图,在中,点是边上一点,,过点作交于,若是等腰三角形,则下列判断中正确的是( )
    A.B.C.D.
    4、(4分)下列各组线段中,不能够组成直角三角形的是( )
    A.6,8,10B.3,4,5C.4,5,6D.5,12,13
    5、(4分)如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为( ).
    A.B.1.5C.D.1.7
    6、(4分)如图,菱形ABCD的周长为24,对角线AC、BD交于点O,∠DAB=60°,作DH⊥AB于点H,连接OH,则OH的长为( )
    A.2B.3C.D.
    7、(4分)某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是( )
    A.中位数B.平均数C.众数D.方差
    8、(4分)不列调查方式中,最合适的是( )
    A.调查某品牌电脑的使用寿命,采用普查的方式
    B.调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式
    C.调查“神舟七号”飞船的零部件质量情况,采用抽样调查的方式
    D.调查苏州地区初中学生的睡眠时间,采用普查的方式
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在□ABCD中,对角线AC,BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 .
    10、(4分)已知三角形的三条中位线的长分别为5cm、6cm、10cm,则这个三角形的周长是_____cm.
    11、(4分)不等式组的解集为x>2,则a的取值范围是_____________.
    12、(4分)如图,已知直线y1=﹣x与y2=nx+4n图象交点的横坐标是﹣2,则关于x的不等式nx+4n>﹣x>0解集是_____.
    13、(4分)如图,四边形是一块正方形场地,小华和小芳在边上取定一点,测量知,,这块场地的对角线长是________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.
    小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.
    小明说根据小东所得的数据可以求出CD的长度.
    你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.
    15、(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.
    (1)试求出纸箱中蓝色球的个数;
    (2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.
    16、(8分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.
    (1) ①依题意补全图形;②求证:BE⊥AC.
    (2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为 (直接写出答案).
    17、(10分)周口市某水果店一周内甲、乙两种水果每天销售情况统计如下:(单位:千克)
    (1)分别求出本周内甲、乙两种水果每天销售量的平均数;
    (2 )哪种水果销售量比较稳定?
    18、(10分)如图,直线与直线相交于点A(3,1),与x轴交于点B.
    (1)求k的值;
    (2)不等式的解集是________________.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(2017,b)是此折线上一点,则b的值为_______________.
    20、(4分)外角和与内角和相等的平面多边形是_______________.
    21、(4分)如图,在四边形中,,于点,动点从点出发,沿的方向运动,到达点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,那么边的长度为______.
    22、(4分)若分式方程 无解,则等于___________
    23、(4分)已知,为实数,且满足,则_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图:,点在一条直线上,.求证:四边形是平行四边形.
    25、(10分)在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
    (1)求反比例函数的表达式;
    (2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
    26、(12分)如图,将等边绕点顺时针旋转得到,的平分线交于点,连接、.
    (1)求度数;
    (2)求证:.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    利用二次根式的性质进行化简即可.
    【详解】
    =|﹣3|=3.
    故选B.
    2、B
    【解析】
    分析:根据方差的意义解答.
    详解:从方差看,乙的方差最小,发挥最稳定.
    故选B.
    点睛:考查方差的意义,方差越小,成绩越稳定.
    3、B
    【解析】
    根据等腰三角形的性质得到根据垂直的性质得到
    根据等量代换得到又即可得到
    根据同角的余角相等即可得到.
    【详解】
    ,

    ,

    从而
    是等腰三角形,



    故选:B.
    考查等腰三角形的性质,垂直的性质,三角形的内角和定理,掌握同角的余角相等是解题的关键.
    4、C
    【解析】
    根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.
    【详解】
    A. 6+8=10,能构成直角三角形,故不符合题意;
    B. 3+4=5,能构成直角三角形,故不符合题意;
    C. 4+5≠6,不能构成直角三角形,故符合题意;
    D. 5+12=13,能构成直角三角形,故不符合题意.
    故选C.
    此题考查勾股定理的逆定理,解题关键在于掌握运算公式.
    5、A
    【解析】
    根据勾股定理求出OA的长,根据实数与数轴的知识解答.
    【详解】

    ∴OA=,
    则点A对应的数是,
    故选A.
    本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.
    6、B
    【解析】
    由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。
    【详解】
    解:∵菱形ABCD的周长为24
    ∴AD=BD=24÷4=6,OB=OD
    由∵∠DAB=60°
    ∴△DAB为等边三角形
    又∵DH⊥AB
    ∴AH=HB
    ∴OH=AD=3
    故答案为B.
    本题考查了菱形的性质、等边三角形、三角形中位线的知识,考查知识点较多,提升了试题难度,但抓住双基,本题便不难。
    7、C
    【解析】
    根据平均数、中位数、众数、方差的意义进行分析选择.
    【详解】
    解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.
    既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,
    故最值得关注的是众数.
    故选:C.
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    8、B
    【解析】
    本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
    【详解】
    A. 调查某品牌电脑的使用寿命,考查会给被调查对象带来损伤破坏,应选择抽样调查的方式;
    B. 调查游客对某国家5A级景区的满意程度情况,采用抽样调查的方式,节省人力、物力、财力,是合适的;
    C. 要保证“神舟七号”飞船成功发射,精确度要求高、事关重大,往往选用普查;
    D. 调查苏州地区初中学生的睡眠时间,费大量的人力物力是得不尝失的,采取抽样调查即可;
    故选B
    此题考查全面调查与抽样调查,解题关键在于对与必要性结合起来
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、21
    【解析】
    10+7+4=21
    10、1
    【解析】
    根据三角形的中位线定理解答即可.
    【详解】
    ∵三角形的三条中位线的长分别是5cm、6cm、10cm,
    ∴三角形的三条边分别是10cm、12cm、20cm.
    ∴这个三角形的周长=10+12+20=1cm.
    故答案是:1.
    本题考查了三角形的中位线定理,熟知三角形的中位线定理是解决问题的关键.
    11、a≤2
    【解析】
    根据求一元一次不等式组解集的口诀,即可得到关于a的不等式,解出即可.
    【详解】
    由题意得a≤2.
    本题考查的是解一元一次不等式组,解答本题的关键是熟练掌握求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,小小大大找不到(无解).
    12、﹣2<x<1
    【解析】
    观察图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>-x>1解集.
    【详解】
    解:观察图象可知:图象在x轴上方,直线y2的图象在直线y1的图象的上方部分对应的自变量的取值即为不等式nx+4n>﹣x>1解集,
    ∴﹣2<x<1,
    故答案为﹣2<x<1.
    本题考查一次函数与不等式、两直线相交或平行问题等知识,解题的关键是学会利用图象法解决自变量的取值范围问题.
    13、40m
    【解析】
    先根据勾股定理求出BC,故可得到正方形对角线的长度.
    【详解】
    ∵,
    ∴,
    ∴对角线AC=.
    故答案为:40m.
    此题主要考查利用勾股定理解直角三角形,解题的关键是熟知勾股定理的运用.
    三、解答题(本大题共5个小题,共48分)
    14、同意,CD=13 m.
    【解析】
    直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.
    【详解】
    同意
    连接BD,如图
    ∵AB=AD=5(m),∠A=60°
    ∴△ABD是等边三角形
    ∴BD=AB=5(m),∠ABD=60°
    ∴∠ABC=150°,
    ∴∠CBD=∠ABC-∠ABD=150°-60°=90°
    在Rt△CBD中,BD=5(m),BC=12(m),
    ∴(m)
    答:CD的长度为13m.
    此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.
    15、(1)50;(2)2
    【解析】
    (1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;
    (2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.
    【详解】
    (1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)
    (2)设小明放入红球x个.根据题意得:
    解得:x=2(个).
    经检验:x=2是所列方程的根.
    答:小明放入的红球的个数为2.
    本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.
    16、(1)①见解析;②见解析;(2)
    【解析】
    (1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;
    (2)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.
    【详解】
    (1)①依题意补全图形,如图1所示.
    ②证明:连接CE,如图2所示.
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,AB=BC,
    ∴∠ACB=∠ACD=∠BCD=45°,
    ∵∠CMN=90°,CM=MN,
    ∴∠MCN=45°,
    ∴∠ACN=∠ACD+∠MCN=90°.
    ∵在Rt△ACN中,点E是AN中点,
    ∴AE=CE=AN.
    ∵AE=CE,AB=CB,
    ∴点B,E在AC的垂直平分线上,
    ∴BE垂直平分AC,
    ∴BE⊥AC.
    (2)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.
    ∵∠BDC=45°,∠DCN=45°,
    ∴BD∥CN,
    ∴四边形DFCN为梯形.
    ∵AB=1,
    ∴CF=DF=BD=,CN=,
    ∴S梯形DFCN=(DF+CN)•CF=(+)×=.
    故答案为:.
    此题考查正方形的性质,等腰直角三角形的性质,平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.根据题意画出图形,利用数形结合解决问题是关键.
    17、(1),;(2)乙种水果销量比较稳定.
    【解析】
    (1)根据平均数的公式计算即可.
    (2)根据方差公式计算,再根据方差的意义“方差越小越稳定”判断销售量哪家更稳定.
    【详解】
    (1),
    (2)



    所以乙种水果销量比较稳定.
    本题考查了求平均数和方差,熟练掌握平均数和方差公式是解答本题的关键,
    18、 (1) ;(2) x>3.
    【解析】
    (1)根据直线y=kx+2与直线相交于点A(3,1),与x轴交于点B可以求得k的值和点B的坐标;
    (2)根据函数图象可以直接写出不等式kx+2<的解集.
    【详解】
    (1),解得:
    (2),解得:x>3
    本题考查一次函数与一元一次不等式,解题的关键是明确题意,利用数形结合的思想解答问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、2
    【解析】
    分析:根据规律发现点O到点D为一个周期,根据其坐标规律即可解答.
    详解:∵点A的坐标为(2,4)且OA=AB,
    ∴O(0,0),B(4,0),C(6,-4),D(8,0),
    2017÷8=252……1,
    ∴b==2.
    点睛:本题主要考查了点的坐标,发现其坐标规律是解题的关键.
    20、四边形
    【解析】
    设此多边形是n边形,根据多边形内角与外角和定理建立方程求解.
    【详解】
    设此多边形是n边形,由题意得:
    解得
    故答案为:四边形.
    本题考查多边形内角和与外角和,熟记n边形的内角和公式,外角和都是360°是解题的关键.
    21、6
    【解析】
    根据题意,分析P的运动路线,分3个阶段分别进行讨论,可得BC,CD,DA的值,过D作DE⊥AB于E,根据勾股定理求出AE,即可求解.
    【详解】
    根据题意,当P在BC上时,三角形的面积增大,结合图2可得BC=4;
    当P在CD上时,三角形的面积不变,结合图2可得CD=3;
    当P在AD上时,三角形的面积变小,结合图2可得AD=5;
    过D作DE⊥AB于E,
    ∵AB∥CD,AB⊥BC,
    ∴四边形DEBC为矩形,
    ∴EB=CD=3,DE=BC=4,
    ∴AE=
    ∴AB=AE+EB=6.
    此题主要考查矩形的动点问题,解题的关键是根据题意作出辅助线进行求解.
    22、
    【解析】
    先去分母,把分式方程的增根代入去分母后的整式方程即可得到答案.
    【详解】
    解:,
    去分母得:,
    所以:,
    因为:方程的增根是,
    所以:此时,
    故答案为:.
    本题考查分式方程无解时字母系数的取值,掌握把增根代入去分母后的整式方程是解题关键.
    23、4
    【解析】
    直接利用二次根式有意义的条件得出、的值,进而得出答案.
    【详解】
    、为实数,且满足,
    ,,
    则.
    故答案为:.
    此题主要考查了二次根式有意义的条件,正确得出、的值是解题关键.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析
    【解析】
    根据“HL”判断证明,根据等角的补角相等得可判断,再根据一组对边平行且相等的四边形是平行四边形可证明四边形BCDF是平行四边形.
    【详解】

    ∴AC+CF=EF+CF

    又,





    ∴四边形是平行四边形.
    本题考查了直角三角形的全等判定与性质以及平行四边形的判定,关键是灵活运用性质和判定解决问题.
    25、(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
    【解析】
    (1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
    (2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
    【详解】
    (1)由旋转得:OC=OA=,∠AOC=135°,
    过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
    在Rt△OMC中,∠COM=45°,OC=,
    ∴OM=CM=1,
    ∴点C(1,1),代入y=得:k=1,
    ∴反比例函数的关系式为:y=,
    答:反比例函数的关系式为:y=
    (2)①当点E在第三象限反比例函数的图象上,如图1,图2,

    ∵点D在y轴上,AEDB是平行四边形,
    ∴AE∥DB,AE=BD,AE⊥OA,
    当x=-时,y==-,
    ∴E(-,-)
    ∵B(0,-1),BD=AE=,
    当点D在B的下方时,
    ∴D(0,-1-)
    当点D在B的上方时,
    ∴D(0,-1+),
    ②当点E在第一象限反比例函数的图象上时,如图3,
    过点E作EN⊥y轴,垂足为N,
    ∵ABED是平行四边形,
    ∴AB=DE,AB=DE,
    ∴∠ABO=∠EDO,
    ∴△AOB≌△END (AAS),
    ∴EN=OA=,DN=OB=1,
    当x=时,代入y=得:y=,
    ∴E(,),
    ∴ON=,OD=ON+DN=1+,
    ∴D(0,1+)
    考查反比例函数图象上点的坐标特征、平行四边形的性质、以及全等三角形的判定和性质等知识,画出不同情况下的图形是解决问题的关键.
    26、(1) ;(2)证明见解析.
    【解析】
    (1)由等边三角形的性质可得,,由旋转的性质可得,,由等腰三角形的性质可求解;
    (2)由“”可证,可得,即可证.
    【详解】
    解:(1)是等边三角形

    等边绕点顺时针旋转得到
    ,,

    (2)和是等边三角形

    平分
    ,,,
    本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
    题号





    总分
    得分
    批阅人
    选手




    方差(s2)
    0.020
    0.019
    0.021
    0.022
    品种 星期









    相关试卷

    安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】:

    这是一份安徽省舒城县联考2024年数学九年级第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】:

    这是一份安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】:

    这是一份安徽省黄山市名校2025届九年级数学第一学期开学学业质量监测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map