安徽省六安市2024-2025学年九年级数学第一学期开学学业质量监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列几组数中,不能作为直角三角形三边长度的是( )
A.3,4,5B.5,7,8C.8,15,17D.1,
2、(4分)某班数学兴趣小组8名同学的毕业升学体育测试成绩依次为:30,29,28,27,28,29,30,28,这组数据的众数是( )
A.27B.28C.29D.30
3、(4分)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是( )
A.B.C.D.
4、(4分)平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是( )
A.矩形B.菱形C.正方形D.平行四边形
5、(4分)如图,在平行四边形中,对角线、相交于,,、、分别是、、的中点,下列结论:
①;②;③;④平分;⑤四边形是菱形.
其中正确的是( )
A.①②③B.①③④C.①②⑤D.②③⑤
6、(4分)如图,是由两个大小完全相同的圆柱形容器在中间连通而成的可以盛水的器具,现匀速地向容器A中注水,则容器A中水面上升的高度h随时间t变化的大致图象是( )
A.B.
C.D.
7、(4分)如图,一个矩形纸片,剪去部分后得到一个三角形,则图中∠1+∠2的度数是( )
A.120°B.90 °C.60°D.30°
8、(4分)有位同学参加歌咏比赛,所得的分数互不相同,取得分前位同学进入决赛,小明知道自己的分数后,要判断自己能否进入决赛,他只需知道这位同学得分的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若式子在实数范围内有意义,则应满足的条件是_____________.
10、(4分)在□ABCD中,∠A,∠B的度数之比为2:7,则∠C=__________.
11、(4分)如图,在中,,将绕顶点顺时针旋转,旋转角为,得到.设中点为,中点为,,连接,当____________时,长度最大,最大值为____________.
12、(4分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为____.
13、(4分)如图所示,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)端午节假期,某商场开展促销活动,活动规定:若购买不超过100元的商品,则按全额交费;若购买超过100元的商品,则超过100元的部分按8折交费.设商品全额为x元,交费为y元.
(1)写出y与x之间的函数关系式.
(2)某顾客在-一次消费中,向售货员交纳了300元,那么在这次消费中,该顾客购买的商品全额为多少元?
15、(8分)如图,在等腰△ABC中,AC=BC,D在BC上,P是射线AD上一动点.
(1)如图①,若∠ACB=90°,AC=8,CD=6,当点P在线段AD上,且△PCD是等腰三角形时,求AP长.
(2)如图②,若∠ACB=90°,∠APC=45°,当点P在AD延长线上时,探究PA,PB,PC的数量关系,并说明理由.
(3)类比探究:如图③,若∠ACB=120°,∠APC=30°,当点P在AD延长线上时,请直接写出表示PA,PB,PC的数量关系的等式.
16、(8分)如图,在平面直角坐标系中,点D是正方形OABC的边AB上的动点,OC=1.以AD为一边在AB的右侧作正方形ADEF,连结BF交DE于P点.
(1)请直接写出点A、B的坐标;
(2)在点D的运动过程中,OD与BF是否存在特殊的位置关系?若存在,试写出OD与BF的位置关系,并证明;若不存在,请说明理由.
(3)当P点为线段DE的三等分点时,试求出AF的长度.
17、(10分)某公司招聘一名员工,现有甲、乙两人竞聘,公司聘请了3位专家和4位群众代表组成评审组,评审组对两人竟聘演讲进行现场打分,记分采用100分制,其得分如下表:
(1)甲、乙两位竞聘者得分的中位数分别是多少
(2)计算甲、乙两位应聘者平均得分,从平均得分看应该录用谁(结果保留一位小数)
(3)现知道1、2、3号评委为专家评委,4、5、6、7号评委为群众评委,如果对专家评委组与群众评委组的平均分数分别赋子适当的权,那么对专家评委组赋的权至少为多少时,甲的平均得分比乙的平均得分多0.5分及以上
18、(10分)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP
①求证:PG=PF;
②探究:DF、DG、DP之间有怎样的数量关系,并证明你的结论.
(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.
20、(4分)若关于x的分式方程无解. 则常数n的值是______.
21、(4分)如图,的对角线,交于点,点是的中点,若,则的长是______.
22、(4分)若,则_________ .
23、(4分)如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图1,将纸片折叠,折叠后的三个三角形可拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.
(1)将纸片按图2的方式折叠成一个叠合矩形,则操作形成的折痕分别是线段_______,__________;___________.
(2)将纸片按图3的方式折叠成一个叠合矩形,若,,求的长;
(3)如图4,四边形纸片满足,,,,,小明把该纸片折叠,得到叠合正方形,请你帮助画出一种叠合正方形的示意图,并求出、的长.
25、(10分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.
26、(12分)某移动通信公司推出了如下两种移动电话计费方式.
说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费元,当主叫计时不超过分钟不再额外收费,超过分钟时,超过部分每分钟加收元(不足分钟按分钟计算).
(1)请根据题意完成如表的填空:
(2)设某月主叫时间为 (分钟),方式一、方式二两种计费方式的费用分别为(元), (元),分别写出两种计费方式中主叫时间 (分钟)与费用为(元), (元)的函数关系式;
(3)请计算说明选择哪种计费方式更省钱.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据勾股定理的逆定理依次判断各项后即可解答.
【详解】
选项A,32+42=52,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项B,52+72≠82,不符合勾股定理的逆定理,不能作为直角三角形三边长度;
选项C,82+152=172,符合勾股定理的逆定理,能作为直角三角形三边长度;
选项D,12+()2=()2,符合勾股定理的逆定理,能作为直角三角形三边长度.
故选B.
本题考查了勾股定理的逆定理,熟练运用勾股定理的逆定理判定三角形是否为直角三角形是解决问题的关键.
2、B
【解析】
分析:根据出现次数最多的数是众数解答.
详解:27出现1次;1出现3次;29出现2次;30出现2次;
所以,众数是1.
故选B.
点睛:本题考查了众数的定义,熟记出现次数最多的是众数是解题的关键.
3、D
【解析】
根据图像分析不同时间段的水面上升速度,进而可得出答案.
【详解】
已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选D.
能够根据条件分析不同时间段的图像是什么形状是解答本题的关键.
4、B
【解析】
在平面直角坐标系中,根据点的坐标画出四边形ABCD,再根据对角线互相垂直的平行四边形是菱形得出四边形ABCD是菱形.
【详解】
解:如图所示:
∵A(-3,0)、B(0,2)、C(3,0)、D(0,-2),
∴OA=OC,OB=OD,
∴四边形ABCD为平行四边形,
∵BD⊥AC,
∴四边形ABCD为菱形,
故选B.
本题考查了菱形的判定,坐标与图形性质,掌握菱形的判定方法利用数形结合是解题的关键.
5、B
【解析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.
【详解】
解:∵四边形ABCD是平行四边形
∴BO=DO=BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,
∴BE⊥AC,故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=AB=AG=BG
∴EG=EF=AG=BG,无法证明GE=GF,故②错误,
∵BG=EF,AB∥CD∥EF
∴四边形BGFE是平行四边形,
∴GF=BE,且BG=EF,GE=GE,
∴△BGE≌△FEG(SSS)故③正确
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
若四边形BEFG是菱形
∴BE=BG=AB,
∴∠BAC=30°
与题意不符合,故⑤错误
故选:B.
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
6、C
【解析】
根据题意可以分析出各个过程中A中水面上的快慢,从而可以解答本题.
【详解】
由题意和图形可知,
从开始到水面到达A和B连通的地方这个过程中,A中水面上升比较快,
从水面到达A和B连通的地方到B中水面和A中水面持平这个过程中,A中水面的高度不变,
从B中水面和A中水面持平到最后两个容器中水面上升到最高这个过程中,A中水面上升比较慢,
故选C.
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
7、B
【解析】
根据直角三角形两锐角互余解答.
【详解】
由题意得,剩下的三角形是直角三角形,
所以,∠1+∠2=90°.
故选:B.
此题考查直角三角形的性质,解题关键在于掌握其性质.
8、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知9人成绩的中位数是第5名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于9个人中,第5名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,需知道这9位同学的分数的中位数.
故选:B.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
直接利用二次根式的定义分析得出答案.
【详解】
解:二次根式在实数范围内有意义,则x-1≥0,
解得:x≥1.
故答案为:x≥1.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
10、40°
【解析】
分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.
详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.
又∵∠A,∠B的度数之比为2:1,∴∠A=180°×=40°,∠B=180°×=140°,∴∠C=40°.
故答案为:40°.
点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.
11、 3
【解析】
连接CP,当点E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.
【详解】
∵,,
∴AB=4,∠A=60°,
由旋转得=∠A=60°,=AB=4,
∵中点为,
∴=2,
∴△是等边三角形,
∴∠=60°,
如图,连接CP,当旋转到点E、C、P三点共线时,EP最长,此时,
∵点E是AC的中点,,
∴CE=1,
∴EP=CE+PC=3,
故答案为: 120,3.
此题考查直角三角形的性质,等边三角形的判定及性质,旋转的性质,解题中首先确定解题思路,根据旋转得到EP的最大值即是CE+PC在进行求值,确定思路是解题的关键.
12、1
【解析】
先根据勾股定理求出BC的长,再根据图形翻折变换的性质得出AE=CE,进而求出△ABE的周长.
【详解】
∵在△ABC中,∠B=90°,AB=3,AC=5,
∵△ADE是△CDE翻折而成,
∴AE=CE,
∴AE+BE=BC=4,
∴△ABE的周长=AB+BC=3+4=1.
故答案为:1.
本题考查的是图形翻折变换的性质,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
13、1
【解析】
先根据平移的性质可得,,,再根据矩形的判定与性质可得,从而可得,然后根据平行线四边形的判定可得四边形ABED是平行四边形,最后根据平行四边形的面积公式即可得.
【详解】
由平移的性质得,,
四边形ACFD是矩形
四边形ABED是平行四边形(一组对边平行且相等的四边形是平行四边形)
则四边形ABED的面积为
故答案为:1.
本题考查了平移的性质、平行四边形的判定、矩形的判定与性质等知识点,掌握平移的性质是解题关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)该顾客购买的商品全额为350元.
【解析】
(1)根据题意分段函数,即当自变量x≤100和x>100两种情况分别探索关系式,
(2)根据金额,判断符合哪个函数,代入求解即可.
【详解】
(1)
(2)由题意得,
解得.
答:该顾客购买的商品全额为350元.
考查根据实际问题求一次函数的关系式、分段函数关系式的探索,以及代入求值等知识,体会函数的意义.
15、(1)满足条件的AP的值为2.8或4或2;(2)PA﹣PB=PC.理由见解析;(3)PA﹣PB=PC.理由见解析.
【解析】
(1)如图①中,作CH⊥AD于H.利用面积法求出CH,利用勾股定理求出DH,再求出PD,接下来分三种情形解决问题即可;
(2)结论:PA﹣PB=PC.如图②中,作EC⊥PC交AP于E.只要证明△ACE≌△BCP即可解决问题;
(3)结论:PA﹣PB=PC.如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.只要证明△ACE≌△BCP即可解决问题;
【详解】
(1)如图①中,作CH⊥AD于H.
在Rt△ACD中,AD==10,
∵×AC×DC=×AD×CH,
∴CH=,
∴DH==,
①当CP=CD,∵CH⊥PD,
∴PH=DH=,
∴PD=,
∴PA=AD﹣PD=10﹣=.
②当CD=DP时,DP=1.AP=10﹣1=4,
③当CP=PD时,易证AP=PD=2,
综上所述,满足条件的AP的值为2.8或4或2.
(2)结论:PA﹣PB=PC.
理由:如图②中,作EC⊥PC交AP于E.
∵∠PCE=90°,∠CPE=42°,
∴∠CEP=∠CPE=42°,
∴CE=CP,PE=PC,
∵∠ACB=∠ECP=90°,
∴∠ACE=∠BCP,
∵CA=CB,
∴△ACE≌△BCP,
∴AE=PB,
∴PA﹣PB=PA﹣EA=PE=PC,
∴PA﹣PB=PC.
(3)结论:PA﹣PB=PC.
理由:如图③中,在AP上取一点E,使得∠ECP=∠ACB=120°.
∵∠CEP=180°﹣120°﹣30°=30°,
∴∠CEP=∠CPE,
∴CE=CP.作CH⊥PE于H,则PE=PC,
∵∠ACB=∠ECP,
∴∠ACE=∠BCP,
∵CA=CB,
∴△ACE≌△BCP,
∴AE=PB,
∴PA﹣PB=PA﹣EA=PE=PC.
本题考查三角形综合题、等腰三角形的性质、全等三角形的判定和性质、勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
16、(1)A(1,0),B(1,1);(2)OD⊥BF,理由见解析;(3)当P点为线段DE的三等分点时,AF的长度为2或2.
【解析】
(1)利用正方形的性质得出OA=AB=1,即可得出结论;
(2)利用SAS判断出△AOD≌△BAF,进而得出∠AOD=∠BAF,即可得出结论;
(3)先表示出BD,DP,再判断出△BDP∽△BAF,得出,代入解方程即可得出结论。
【详解】
(1)∵四边形OABC是正方形,
∴BC⊥OC,AB⊥OA,OB=AB=BC=OC,
∵OC=1,
∴BC=AB=1,
∴A(1,0),B(1,1);
(2)OD⊥BF,理由:如图,延长OD交BF于G,
∵四边形ADEF是正方形,
∴AD=AF,∠BAF=∠OAD,
在△AOD和△BAF中, ,
∴△AOD≌△BAF(SAS),
∴∠AOD=∠BAF,
∴∠BAF+∠AFB=90°,
∴∠AOD+AFB=90°,
∴∠OGF=90°,
∴OD⊥BF;
(3)设正方形ADEF的边长为x,
∴AF=AD=DE=x,
∴BD=AB﹣AD=1﹣x,
∵点P是DE的三等分点,
∴DP=AF=x或DP=AF=x
∵DE∥AF,
∴△BDP∽△BAF,
∴,
∴或 ,
∴x=2或x=2,
当P点为线段DE的三等分点时,AF的长度为2或2.
本题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,垂直的判定,相似三角形的判定和性质,用方程的思想解决问题是解本题的
17、(1)甲得分中位数为:92(分),乙得分中位数为:91(分);(2)甲平均得分: 91(分),
乙平均得分: 91.6(分),平均得分看应该录用乙;(3)专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上.
【解析】
(1)将甲、乙二人的成绩分别排序找出中间位置的一个数即可,
(2)根据算术平均数的计算方法求平均数即可,
(3)根据加权平均数的求法设出权数,列不等式解答即可.
【详解】
(1)甲得分:87 87 89 92 93 94 95,中位数为:92(分),
乙得分:87 89 89 91 94 95 96,中位数为:91(分);
(2)甲平均得分:甲=92+(-3+2+1-5+3+0-5)=91(分),
乙平均得分:乙=92+(-5-3-1+3+2+4-3)≈91.6(分),
从平均得分看应该录用乙;
(3)设专家评委组赋的权至少为x时,甲的平均得分比乙的平均得分多0.5分及以上,
(89+94+93)x+(87+95+92+87)(1-x)≥(87+89+91)x+(95+94+96+89)(1-x)
即:276x+361-361x≥267x+374-374x
解得: x≥≈0.6
所以,专家评委组赋的权至少为0.6时,甲的平均得分比乙的平均得分多0.5分及以上。
考查中位数、算术平均数、加权平均数的意义及计算方法,理解权重对平均数的影响是解决问题的关键.
18、(1)①详见解析;②DG+DF=DP;(2)不成立,数量关系式应为:DG-DF=DP
【解析】
(1)①根据矩形性质证△HPG≌△DPF(ASA),得PG=PF;②由①知,△HPD为等腰直角三角形,△HPG≌△DPF,根据直角三角形性质可得HD=DP;(2)过点P作PH⊥PD交射线DA于点H,得到△HPD为等腰直角三角形,证△HPG≌△DPF,得HG=DF,DH=DG-HG=DG-DF,DG-DF=DP.
【详解】
(1)①∵由矩形性质得∠GPF=∠HPD=90°,∠ADC=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,
∴∠PDF=∠ADP=45°,
∴△HPD为等腰直角三角形,
∴∠DHP=∠PDF=45°,
在△HPG和△DPF中,
∵,
∴△HPG≌△DPF(ASA),
∴PG=PF;
②结论:DG+DF=DP,
由①知,△HPD为等腰直角三角形,△HPG≌△DPF,
∴HD=DP,HG=DF,
∴HD=HG+DG=DF+DG,
∴DG+DF=DP;
(2)不成立,数量关系式应为:DG-DF=DP,
如图,过点P作PH⊥PD交射线DA于点H,
∵PF⊥PG,
∴∠GPF=∠HPD=90°,
∴∠GPH=∠FPD,
∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,
∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,
∴∠DHP=∠EDC=45°,且PH=PD,HD=DP,
∴∠GHP=∠FDP=180°-45°=135°,
在△HPG和△DPF中,
∵
∴△HPG≌△DPF,
∴HG=DF,
∴DH=DG-HG=DG-DF,
∴DG-DF=DP.
考核知识点:矩形性质的运用,等腰直角三角形.综合运用全等三角形判定和等腰直角三角形性质是关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、AB=2BC.
【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.
【详解】
解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:
∵DC=AB,E为AB的中点,
∴CD=BE=AE.
又∵DC∥AB,
∴四边形BCDE是平行四边形,
∵AB=2BC,
∴BE=BC,
∴四边形BCDE是菱形.
故答案为:AB=2BC.
本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.
20、1或
【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解,使原方程的分母等于1.
【详解】
解:两边都乘(x−3),得3−2x+nx−2=−x+3,
解得x=,
n=1时,整式方程无解,分式方程无解;
∴当x=3时分母为1,方程无解,
即=3,
∴n=时,方程无解;
故答案为:1或.
本题考查了分式方程无解的条件,掌握知识点是解题关键.
21、3
【解析】
先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.
【详解】
∵▱ABCD的对角线AC、BD相交于点O,
∴OB=OD,AD=BC=6
∵点E是CD的中点,
∴CE=DE,
∴OE是△BCD的中位线,
∵AD=6,
∴OE=AD=3.
故答案为:3
此题考查平行四边形的性质,解题关键在于利用OE是△BCD的中位线
22、-2
【解析】
试题解析:∵
∴b=3a
∴.
23、44°
【解析】
利用平行线的性质以及三角形的内角和定理即可解决问题.
【详解】
∵AD∥BC,
∴∠DEF=∠BFE=67°;
又∵∠BEF=∠DEF=67°,
∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣67°﹣67°=46°,
∵∠A=90°,
∴∠ABE=90°﹣46°=44°,
故答案为44°.
本题考查平行线的性质,解题的关键是熟练掌握作为基本知识.
二、解答题(本大题共3个小题,共30分)
24、(1)AE,GF,1:2;(2)13;(3)AD =1,BC =7;
【解析】
(1)根据题意得出操作形成的折痕分别是线段AE、GF;由折叠的性质得出△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,得出S矩形AEFG=S▱ABCD,即可得出答案;
(2)由矩形的性质和勾股定理求出FH,即可得出答案;
(3)由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,由叠合正方形的性质得出BM=FM=4,由勾股定理得出GM=CM==3,得出AD=BG=BM-GM=1,BC=BM+CM=7;
【详解】
解:(1)根据题意得:操作形成的折痕分别是线段AE、GF;
由折叠的性质得:△ABE≌△AHE,四边形AHFG≌四边形DCFG,
∴△ABE的面积=△AHE的面积,四边形AHFG的面积=四边形DCFG的面积,
∴S矩形AEFG=S▱ABCD,
∴S矩形AEFG:S▱ABCD=1:2;
故答案为:AE,GF,1:2;
(2)∵四边形EFGH是矩形,
∴∠HEF=90°,
∴FH==13,
由折叠的性质得:AD=FH=13;
(3)图5所示:
如图4所示:由折叠的性质得:AD=BG,AE=BE=AB=4,CF=DF=CD=5,GM=CM,∠FMC=90°,
∵四边形EFMB是叠合正方形,
∴BM=FM=4,
∴GM=CM==3,
∴AD=BG=BM-GM=1,BC=BM+CM=7;
此题考查折叠的性质,正方形的性质,勾股定理,梯形面积,解题关键在于掌握折叠的性质.
25、,.
【解析】
先对进行化简,再选择-1,0,1代入计算即可.
【详解】
原式
因为且
所以当时,原式
当时,原式
考查了整式的化简求值,解题关键是熟记分式的运算法则.
26、(1),;(2),;(3)当时方式一省钱;当时,方式二省钱,当时;方式一省钱,当为分钟、分钟时,两种方式费用相同
【解析】
(1)按照表格中的收费方式计算即可;
(2)根据表格中的收费方式,对t进行分段列出函数关系式;
(3)根据t的取值范围,列出不等式解答即可.
【详解】
解:(1)由题意可得:月主叫时间分钟时,方式一收费为元;月主叫时间分钟时,方式二收费为元;
故答案为:;.
(2)由题意可得: (元)的函数关系式为:
(元)的函数关系式为:
(3)①当时方式一更省钱;
②当时,若两种方式费用相同,则当.
解得:
即当 ,两种方式费用相同,
当时方式一省钱
当时,方式二省钱;
③当时,若两种方式费用相同,则当,
解得:
即当,两种方式费用相同,当时方式二省钱,
当时,方式一省钱;
综上所述,当时方式一省钱;当时,方式二省钱,当时,方式一省钱,当为分钟、分钟时,两种方式费用相同.
本题考查了一次函数中方案选择问题,解题的关键是表达出不同收费方式的函数关系式,再利用不等式的知识对不同时间内进行讨论.
题号
一
二
三
四
五
总分
得分
评委(序号)
1
2
3
4
5
6
7
甲(得分)
89
94
93
87
95
92
87
乙(得分)
87
89
91
95
94
96
89
月使用费/元
主叫限定时间/分钟
主叫超时费(元/分钟)
方式一
方式二
月主叫时间分钟
月主叫时间分钟
方式一收费/元
______________
方式二收费/元
_______________
安徽省六安市三校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份安徽省六安市三校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】: 这是一份安徽省六安市金寨县2025届数学九年级第一学期开学学业质量监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省六安皋城中学2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】: 这是一份安徽省六安皋城中学2024-2025学年数学九年级第一学期开学学业质量监测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。