安徽省阜阳颍东区四校联考2024年数学九上开学经典模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下图为正比例函数的图像,则一次函数的大致图像是( )
A.B.C.D.
2、(4分)已知四边形是平行四边形,下列结论中不正确的是( )
A.当时,它是菱形B.当时,它是菱形
C.当时,它是矩形D.当时,它是正方形
3、(4分)如果aA.a+24、(4分)下列说法正确的是( )
A.明天会下雨是必然事件
B.不可能事件发生的概率是0
C.在水平的桌面上任意抛掷一枚图钉,一定针尖向下
D.投掷一枚之地近月的硬币1000次,正面朝下的次数一定是500次
5、(4分)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)
6、(4分)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为( )
A.40°B.36°C.30°D.25°
7、(4分)如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为( )
A.(2,2)B.(2,)C.(,2)D.(+1,
8、(4分)如图,把一个边长为1的正方形放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为( ).
A.B.1.5C.D.1.7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)函数y=的自变量x的取值范围是_____.
10、(4分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.
11、(4分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为_________________.
12、(4分)若有意义,则x的取值范围为___.
13、(4分)如图,矩形ABCD的对角线AC与BD交于点O,过点O作BD的垂线分别交AD,BC于E,F两点.若AC=,∠AEO=120°,则FC的长度为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)小明、小亮都是射箭爱好者,他们在相同的条件下各射箭5次,每次射箭的成绩情况如表:
(1)请你根据表中的数据填写下表:
(2)从平均数和方差相结合看,谁的成绩好些?
15、(8分)如图,已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O,连接AF、CE.
(1)求证:△AOE≌△COF;
(2)求证:四边形AFCE为菱形;
(3)求菱形AFCE的周长.
16、(8分)如图,平面直角坐标系中,反比例函数y1=的图象与函数y2=mx图象交于点A,过点A作AB⊥x轴于点B,已知点A坐标(2,1).
(1)求反比例函数解析式;
(2)当y2>y1时,求x的取值范围.
17、(10分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
18、(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.
(1)求与的函数关系式,并写出的取值范围;
(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?
(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若代数式在实数内范围有意义,则 x 的取值范围是_________.
20、(4分)已知a+b=5,ab=-6,则代数式ab2+a2b的值是______.
21、(4分)若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).
22、(4分)若,,则=___________.
23、(4分)在中,,有一个锐角为,.若点在直线上(不与点、重合),且,则的长是___________
二、解答题(本大题共3个小题,共30分)
24、(8分)取一张长与宽之比为的长方形纸板,剪去四个边长为的小正方形(如图),并用它做一个无盖的长方体形状的包装盒,要使包装盒的容积为(纸板的厚度略去不计),这张长方形纸板的长与宽分别为多少厘米?
25、(10分)在中,,,是的角平分线,过点作于点,将绕点旋转,使的两边交直线于点,交直线于点,请解答下列问题:
(1)当绕点旋转到如图1的位置,点在线段上,点在线段上时,且满足.
①请判断线段、、之间的数量关系,并加以证明
②求出的度数.
(2)当保持等于(1)中度数且绕点旋转到图2的位置时,若,,求的面积.
26、(12分)如图,一次函数与的图象相交于
(1)求点的坐标及;
(2)若一次函数与的图象与轴分别相交于点、,求的面积.
(3)结合图象,直接写出时的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据正比例函数图象所经过的象限,得出k<0,由此可推知一次函数象与y轴交于负半轴且经过一、三象限.
【详解】
解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,
∴k<0,
∴一次函数y=x+k的图象与y轴交于负半轴且经过一、三象限.
故选B.
本题考查了一次函数图象与比例系数的关系.
2、D
【解析】
根据特殊平行四边形的判定方法判断即可.
【详解】
解:有一组邻边相等的平行四边形是菱形,A选项正确;对角线互相垂直的平行四边形是菱形,B选项正确;有一个角是直角的平行四边形是矩形,C选项正确;对角线互相垂直且相等的平行四边形是正方形,D选项错误.
故答案为:D
本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.
3、C
【解析】
根据不等式的性质,逐项判断即可.
【详解】
解:A.,,选项结论正确,不符合题意;
B.,,选项结论正确,不符合题意;
C.,,选项结论错误,符合题意;
D.,,选项结论正确,不符合题意.
故选:C.
此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.
4、B
【解析】
根据确定事件,不确定事件的定义;随机事件概率的意义;找到正确选项即可.
【详解】
A.每天可能下雨,也可能不下雨,是不确定事件,故该选项不符合题意,
B.不可能事件发生的概率是0,正确,故该选项符合题意,
C.在水平的桌面上任意抛掷一枚图钉,一定针尖向上,故该选项不符合题意,
D.投掷一枚之地近月的硬币1000次,正面朝下的次数不一定是500次,故该选项不符合题意,
故选B.
本题主要考查了事件的可能性的大小,掌握事件的类型及发生的概率是解题的关键.
5、A
【解析】
根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,
∴二次函数解析式为.
∴所给四点中,只有(2,4)满足.故选A.
6、B
【解析】
根据AB=AC可得∠B=∠C,CD=DA可得∠ADB=2∠C=2∠B,BA=BD,可得∠BDA=∠BAD=2∠B,在△ABD中利用三角形内角和定理可求出∠B.
【详解】
解:∵AB=AC,
∴∠B=∠C,
∵CD=DA,
∴∠C=∠DAC,
∵BA=BD,
∴∠BDA=∠BAD=2∠C=2∠B,
设∠B=α,则∠BDA=∠BAD=2α,
又∵∠B+∠BAD+∠BDA=180°,
∴α+2α+2α=180°,
∴α=36°,即∠B=36°,
故选:B.
本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理和方程思想的应用.
7、B
【解析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.
【详解】
连接DB,如图,
由作法得EF垂直平分AB,
∴DA=DB,
∵四边形ABCD是菱形,
∴AD∥BC,AD=AB,
∴AD=AB=DB,
∴△ADB为等边三角形,
∴∠DAB=60°,
∴∠ABO=60°,
∵A(0,),
∴OA=,
∴OB=OA=1,AB=2OB=2,
∴AD=AB=2,
而AD平行x轴,
∴D(2,).
故选:B.
考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质
8、A
【解析】
根据勾股定理求出OA的长,根据实数与数轴的知识解答.
【详解】
,
∴OA=,
则点A对应的数是,
故选A.
本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x≤且x≠0
【解析】
根据题意得x≠0且1﹣2x≥0,
所以且.
故答案为且.
10、55.
【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C
∴∠ACA’=35°,∠A =∠A’,.
∵∠A’DC=90°,
∴∠A’ =55°.
∴∠A=55°.
考点:1.旋转的性质;2.直角三角形两锐角的关系.
11、 (2,-1)
【解析】
可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.
【详解】
∵M到x轴的距离为1,到y轴的距离为2,
∴M纵坐标可能为±1,横坐标可能为±2,
∵点M在第四象限,
∴M坐标为(2,-1).
故答案为:(2,-1).
本题考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.
12、x≥﹣1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x+1≥0且x+2≠0,解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件和分式有意义的条件,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
13、1
【解析】
先根据矩形的性质,推理得到OF=CF,再根据Rt△BOF求得OF的长,即可得到CF的长.
【详解】
解:∵EF⊥BD,∠AEO=120°,
∴∠EDO=30°,∠DEO=60°,
∵四边形ABCD是矩形,
∴∠OBF=∠OCF=30°,∠BFO=60°,
∴∠FOC=60°-30°=30°,
∴OF=CF,
又∵Rt△BOF中,BO=BD=AC=,
∴OF=tan30°×BO=1,
∴CF=1,
故答案为:1.
本题考查矩形的性质以及解直角三角形的运用,解题关键是掌握:矩形的对角线相等且互相平分.
三、解答题(本大题共5个小题,共48分)
14、(1)填表见解析;(2)见解析.
【解析】
分析:(1)根据平均数、众数和方差的定义进行填表即可;
(2)根据两人的成绩的平均数相同,再根据方差得出乙的成绩比甲稳定,即可求出答案.
详解:(1)填表如下:
(2)小明和小亮射箭的平均数都是7,但小明比小亮的方差要小,说明小明的成绩较为稳定,所以小明的成绩比小亮的成绩要好些.
点睛:本题主要考查了平均数、众数、中位数、方差的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
15、(1)详见解析;(2)详见解析;(3)20cm.
【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行的性质得出∠EAO=∠FCO,根据ASA即可得出两三角形全等;
(2)根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;
(3)设AF=xcm,则CF=AF=xcm,BF=(8-x)cm,在Rt△ABF中,由勾股定理得出方程42+(8-x)2=x2,求出x的值,进而得到菱形AFCE的周长.
【详解】
(1)证明:∵EF是AC的垂直平分线,
∴AO=OC,∠AOE=∠COF=90°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠EAO=∠FCO.
在△AOE和△COF中,
,
∴△AOE≌△COF(ASA);
(2)证明:∵△AOE≌△COF,
∴OE=OF,
∵OA=OC,
∴四边形AFCE为平行四边形,
又∵EF⊥AC,
∴平行四边形AFCE为菱形;
(3)解:设AF=xcm,则CF=AF=xcm,BF=(8﹣x)cm,
在Rt△ABF中,由勾股定理得:
AB2+BF2=AF2,
即42+(8﹣x)2=x2,
解得x=1.
所以菱形AFCE的周长为1×4=20cm.
本题考查了菱形的判定与性质, 全等三角形的判定与性质, 线段垂直平分线的性质, 矩形的性质等知识.根据勾股定理并建立方程是解题的关键.
16、(1)反比例函数的解析式为y=;(1)﹣1<x<0或x>1.
.
【解析】
(1)利用待定系数法即可解决问题;
(1)根据对称性确定点C坐标,观察图象,y1的图象在y1的图象上方的自变量的取值,即为所求.
【详解】
(1)∵反比例函数y1=经过点A(1,1),
∴k=1,
∴反比例函数的解析式为y=;
(1)根据对称性可知:A、C关于原点对称,可得C(﹣1,﹣1),
观察图象可知,当y1>y1时,x的取值范围为﹣1<x<0或x>1.
本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用对称性确定点C坐标.
17、1
【解析】
首先根据平行四边形的性质和对角线的和求得AO+OD的长,然后根据BC的长求得AD的长,从而求得△AOD的周长.
【详解】
解:如图:
∵四边形ABCD是平行四边形,
∴AO=CO,BO=DO,
∵AC+BD=28,
∴AO+OD=14,
∵AD=BC=12,
∴△AOD的周长=AO+OD+AD=14+12=1.
本题考查了平行四边形的性质,解题的关键是了解平行四边形的对角线互相平分,难度不大.
18、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.
【解析】
【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;
(2)根据利润=每千克的利润×销售量,可得关于x的二次函数,利用二次函数的性质即可求得;
(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.
【详解】(1)设 ,将点(10,200)、(15,150)分别代入,
则,解得 ,
∴,
∵蜜柚销售不会亏本,∴,
又,∴ ,∴,
∴ ;
(2) 设利润为元,
则
=
=,
∴ 当 时, 最大为1210,
∴ 定价为19元时,利润最大,最大利润是1210元;
(3) 当 时,,
110×40=4400<4800,
∴不能销售完这批蜜柚.
【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、x>1
【解析】
根据分式及二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
【详解】
∵代数式在实数范围内有意义,
∴.
故答案为:x>1.
本题考查二次根式及分式有意义的条件,掌握二次根式及分式有意义的条件是解答此题的关键.
20、-1.
【解析】
先利用提公因式法因式分解,然后利用整体代入法求值即可.
【详解】
解:∵ab2+a2b=ab(a+b),
而a+b=5,ab=-6,
∴ab2+a2b=-6×5=-1.
故答案为:-1.
此题考查的是因式分解,掌握利用提公因式法因式分解是解决此题的关键.
21、
【解析】
可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.
【详解】
解:∵一次函数
∴y随x增大而减小
∵1<2
∴
故答案为:
本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.
22、
【解析】
首先根据平方差公式进行变换,然后直接代入,即可得解.
【详解】
解:根据平方差公式,可得
=
将,,代入,得
原式==
故答案为.
此题主要考查平方差公式的运用,熟练掌握即可解题.
23、或或
【解析】
分及两种情况:当时,由三角形内角和定理结合可得出为等边三角形,利用等边三角形的性质可求出的长;当时,通过解直角三角形可求出,的长,再由或可求出的长.综上,此题得解.
【详解】
解:I.当时,如图1所示.
,,
,
为等边三角形,
;
II.当时,如图2所示.
在中,,,
,.
在中,,
,
或.
故答案为12或或.
本题考查了含30度角的直角三角形、解直角三角形以及等边三角形的判定与性质,分及两种情况,求出的长是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、长为30厘米,宽为12厘米
【解析】
设该长方形纸板的长为,宽为,根据题意列出一元二次方程即可进行求解.
【详解】
解:设该长方形纸板的长为,宽为,
根据题意得:,即,
解得:,(不合题意舍去),
∴,.
答:这张长方形纸板的长为30厘米,宽为12厘米
此题主要考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.
25、 (1)①,理由见解析;②;(2) .
【解析】
(1)①根据角平分线的性质得到根据全等三角形的性质和判定即可得到答案;
②根据全等三角形的性质即可得到答案;
(2) 根据全等三角形的性质和判定即可得到答案;
【详解】
(1)①
∵
∴,
∵平分
∴
又∵
∴
∴
∵中,
∴
∴
∴
∴
∵
∴
②∵
∴
∴
∵
∴
∴
(2)∵
∴
又∵
∴
∴
∵
∴
∴
设,则
∵,∴
∴,
∴
∴
∴
∴
∴
∴
本题考查角平分线的性质、全等三角形的性质和判定,解题的关键是掌握角平分线的性质、全等三角形的性质和判定.
26、(1);(2)9;(3)时的取值范围是.
【解析】
(1)把代入中,求得n,再代入可得m的值;
(2)分别求得B、C的坐标,以及BC的长,再利用面积公式求出答案;
(3)观察图象可直接得出结果。
【详解】
解:(1)把代入中,则
∴
把代入中,则
(2)当时,,,则点坐标为;
当时,,则点坐标为;
∴,
∴的面积;
(3)根据图象可知,时的取值范围是.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.也考查了待定系数法和三角形的面积。
题号
一
二
三
四
五
总分
得分
批阅人
射箭次数
第1次
第2次
第3次
第4次
第5次
小明成绩(环)
6
7
7
7
8
小亮成绩(环)
4
8
8
6
9
姓名
平均数(环)
众数(环)
方差
小明
7
0.4
小亮
8
安徽省阜阳市颍东区2024年九上数学开学调研模拟试题【含答案】: 这是一份安徽省阜阳市颍东区2024年九上数学开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省阜阳市十校联考数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年安徽省阜阳市十校联考数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省阜阳市颍东区2023-2024学年九上数学期末预测试题含答案: 这是一份安徽省阜阳市颍东区2023-2024学年九上数学期末预测试题含答案,共9页。