安徽省蚌埠市禹会区2025届九上数学开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.的相反数是B.2是4的平方根
C.是无理数D.计算:
2、(4分)做“抛掷一枚质地均匀的硬币试验”,在大量重复试验中,对于事件“正面朝上”的频率和概率,下列说法正确的是( )
A.概率等于频率B.频率等于C.概率是随机的D.频率会在某一个常数附近摆动
3、(4分)下列4个命题:
①对角线相等且互相平分的四边形是正方形;
②有三个角是直角的四边形是矩形;
③对角线互相垂直的平行四边形是菱形;
④一组对边平行,另一组对边相等的四边形是平行四边形
其中正确的是( )
A.②③B.②C.①②④D.③④
4、(4分)下列计算错误的是( )
A.B.C.D.
5、(4分)如图,已知函数y=ax+b和y=kx的图像交于点P,则根据图像可得关于x,y的二元一次方程组的解是( )
A.B.C.D.
6、(4分)在△ABC中,a、b、c分别是∠A,∠B,∠C的对边,若(a﹣2)2+|b﹣2|+=0,则这个三角形一定是( )
A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形
7、(4分)点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为( )
A.B.C.D.
8、(4分)下列各式是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将一宽为1dm的矩形纸条沿BC折叠,若,则折叠后重叠部分的面积为________dm2.
10、(4分)如图,菱形ABCD的对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=10cm,则OE的长为_____.
11、(4分)将直线沿y轴向上平移5个单位长度后,所得图象对应的函数关系式为_________.
12、(4分)对甲、乙两台机床生产的同一种零件进行抽样检测(抽查的零件个数相同),其平均数、方差的计算结果是:机床甲:,;机床乙:,.由此可知:____(填甲或乙)机床性能较好.
13、(4分)如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:+(﹣1)2﹣
15、(8分)为了让“两会”精神深入青年学生,增强学子们的历史使命和社会责任感,某高校党委举办了“奋力奔跑同心追梦”两会主题知识竞答活动,文学社团为选派优秀同学参加学校竞答活动,提前对甲、乙两位同学进行了6次测验:
①收集数据:分别记录甲、乙两位同学6次测验成绩(单位:分)
②整理数据:列表格整理两位同学的测验成绩(单位:分)
③描述数据:根据甲、乙两位同学的成绩绘制折线统计图
④分析数据:两组成绩的平均数、中位数、众数、方差如下表:
得出结论:结合上述统计过程,回答下列问题:
(1)补全④中表格;
(2)甲、乙两名同学中,_______(填甲或乙)的成绩更稳定,理由是______________________
(3)如果由你来选择一名同学参加学校的竞答活动,你会选择__________(填甲或乙),理由是___________
16、(8分)(1)÷﹣2×+;
(2) .
17、(10分)计算:.
18、(10分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数y=﹣x+4图象与x轴、y轴分别交于点A、点B,点P为正比例函数y=kx(k>0)图象上一动点,且满足∠PBO=∠POA,则AP的最小值为_____.
20、(4分)已知,化简二次根式的正确结果是_______________.
21、(4分)如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.
22、(4分)中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是__.
23、(4分)若分式 的值为零,则x=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x+1成正比例,当x=1时,y=3,求y与x的函数关系式.
25、(10分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
(1)求这个一次函数的关系式;
(2)在如图所示的平面直角坐标系中作出函数的图像;
(3)由图像观察,当0≤x≤2时,函数y的取值范围.
26、(12分)先化简,再求值:,其中a=6
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据只有符号不同的两个数互为相反数;开方运算,可得答案.
【详解】
A. 只有符号不同的两个数互为相反数,故A正确;
B. 2是4的平方根,故B正确;
C.=3是有理数,故C错误;
D. =3≠-3,故D错误;
故选B.
本题考查了相反数,平方根,立方根的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
2、D
【解析】
频率是在一次试验中某一事件出现的次数与试验总数的比值。概率是某一事件所固有的性质。频率是变化的每次试验可能不同,概率是稳定值不变。在一定条件下频率可以近似代替概率。
【详解】
A、概率不等于频率,A选项错误;
B、频率等于 ,B选项错误
C、概率是稳定值不变,C选项错误
D、频率会在某一个常数附近摆动,D选项是正确的。
故答案为:D
此题主要考查了概率公式,以及频率和概率的区别。
3、A
【解析】
根据正方形的判定,矩形的判定、菱形的判定和平行四边形的判定判断即可
【详解】
①对角线相等且互相垂直平分的四边形是正方形,少“垂直”,故错;
②四边形的三个角是直角,由内角和为360°知,第四个角必是直角,正确;
③平行四边形对角线互相平分,加上对角线互相垂直,是菱形,故正确;
④有可能是等腰梯形,故错,
正确的是②③
此题考查正方形的判定,矩形的判定、菱形的判定和平行四边形的判定,解题关键在于掌握判定定理
4、D
【解析】
根据二次根式的运算法则分别计算,再作判断.
【详解】
A、,选项正确;
B、,选项正确;
C、,选项正确;
D、,选项错误.
故选:D.
本题主要考查二次根式的运算,解题的关键是熟练地掌握二次根式的运算法则.
5、B
【解析】
函数y=ax+b和y=kx的图象交于点P(−4,−2),
即x=−4,y=−2同时满足两个一次函数的解析式。
所以关于x,y的方程组的解是: x= - 4 , y= - 2.
故选B.
点睛:由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
6、C
【解析】
根据非负数的性质列出方程,解出a、b、c的值后,再用勾股定理的逆定理进行判断.
【详解】
解:根据题意,得a-2=0,b-=0,c-2=0,
解得a=2,b=,c=2,
∴a=c,
又∵,
∴∠B=90°,
∴△ABC是等腰直角三角形.
故选C.
本题考查了非负数的性质和勾股定理的逆定理,属于基础题型,解题的关键是熟悉非负数的性质,正确运用勾股定理的逆定理.
7、A
【解析】
解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.
8、C
【解析】
根据最简二次根式的定义对各选项分析判断利用排除法求解.
【详解】
解:A、不是最简二次根式,错误;
B、不是最简二次根式,错误;
C、是最简二次根式,正确;
D、不是最简二次根式,错误;
故选:C.
本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
作出AB边上的高,求出AC的长;根据翻折不变性及平行线的性质,求出AC=AB,再利用三角形的面积公式解答即可
【详解】
作CD⊥AB,
∵CG∥AB,
∴∠1=∠2,
根据翻折不变性,∠1=∠BCA,
故∠2=∠BCA.
∴AB=AC.
又∵∠CAB=30∘,
∴在Rt△ADC中,AC=2CD=2dm,
∴AB=2dm,
S△ABC=AB×CD=1dm2.
故答案为:1.
本题考查翻折变换,熟练掌握翻折不变性及平行线的性质是解题关键.
10、5cm
【解析】
只要得出OE是△ABC的中位线,从而求得OE的长.
【详解】
解:∵OE∥DC,AO=CO,
∴OE是△ABC的中位线,
∵四边形ABCD是菱形,
∴AB=AD=10cm,
∴OE=5cm.
故答案为5cm.
本题考查了菱形的性质及三角形的中位线定理,属于基础题,关键是得出OE是△ABC的中位线,难度一般.
11、
【解析】
分析:直接根据“上加下减”的原则进行解答即可.
详解:由“上加下减”的原则可知,直线y=-2x﹣2向上平移5个单位,所得直线解析式是:y=-2x﹣2+5,即y=-2x+1.
故答案为:y=-2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
12、甲
【解析】
试题解析:∵S2甲<S2乙,
∴甲机床的性能较好.
点睛:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
13、5或
【解析】
分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
详解:∵四边形ABCD是菱形,
∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,
∵
∴△ABD是等边三角形,
∴BD=AB=6,
∴
∴
∴
∵点E在AC上,
∴当E在点O左边时
当点E在点O右边时
∴或;
故答案为或.
点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
三、解答题(本大题共5个小题,共48分)
14、1
【解析】
先利用完全平方公式计算,然后把二次根式化为最简二次根式后合并即可.
【详解】
原式=3+3﹣2+1﹣
=1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、(1)1;4;(2)乙;乙的方差更小,成绩更稳定;(3)乙;甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定.
【解析】
(1)按照众数的定义即可求得甲组的众数;根据方差的计算公式可计算出乙的方差;
(2)比较两组成绩的方差即可回答,方差越小越稳定;
(3)综合比较两级成绩的平均数、中位数、众数、方差的大小即可作出判断.
【详解】
(1)甲组成绩1分出现了两次,是出现次数最多的,所以甲组成绩的众数是1(分);
乙组成绩的方差
=
=4,
故答案是:1;4;
(2)∵甲的方差是2.3,乙的方差是4,
∴乙的方差更小,成绩更稳定;
故答案是:乙;乙的方差更小,成绩更稳定;
(3)甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定,综合以上因素,应选择乙组去参加.
故答案是:乙;甲、乙组成绩的平均数相同,乙的中位数、众数都大于甲,乙的方差又比甲的方差小,成绩更稳定.
本题考查了统计学中的相关统计量的意义,掌握平均数、中位数、众数、方差的意义及计算方法是解题关键.
16、(1)3;(2)-6.
【解析】
分析:(1)先把各二次根式进行化简,然后再进行乘除运算,最后合并同类二次根式即可得解;
(2)先把二次根式进行化简和云绝对值符号,然后再进行乘除运算,最后合并同类二次根式即可得解.
详解:(1)原式=
==3.
(2)原式==-6.
点睛:熟练掌握二次根式的化简,灵活运用运算律解题.在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.
17、
【解析】
根据分式的基本运算法则,先算括号内,再算除法.
【详解】
试题分析:
解:
考点:实数的运算;本题属于基础应用题,只需学生熟练掌握实数的基本运算规则,即可完成.
18、(1)见解析(2)①1;②2
【解析】
试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
试题解析:(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
∵AM=1=AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形,
考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2﹣2
【解析】
如图所示:
因为∠PBO=∠POA,
所以∠BPO=90°,则点P是以OB为直径的圆上.
设圆心为M,连接MA与圆M的交点即是P,此时PA最短,
∵OA=4,OM=2,
∴MA=
又∵MP=2,AP=MA-MP
∴AP=.
20、
【解析】
由题意:-a3b≥0,即ab≤0,
∵a<b,
∴a≤0<b;
所以原式=|a|=-a.
21、15
【解析】
根据平行四边形与中位线的性质即可求解.
【详解】
∵四边形ABCD为平行四边形,的周长是30,
∴△ADC的周长为30,
∵点、分别是平行四边形的两边、的中点.
∴DE=AD,DF=CD,EF=AC,
∴则的周长=×30=15.
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.
22、
【解析】
根据中心对称图形的性质得到圆中的黑色部分和白色部分面积相等, 根据概率公式计算即可 .
【详解】
∵圆中的黑色部分和白色部分关于圆心中心对称,
∴圆中的黑色部分和白色部分面积相等,
∴在圆内随机取一点, 则此点取黑色部分的概率是,
故答案为.
考查的是概率公式、 中心对称图形, 掌握概率公式是解题的关键 .
23、2
【解析】
分式的值为1的条件是:(1)分子=1;(2)分母≠1.两个条件需同时具备,缺一不可.据此可以解答本题.
【详解】
依题意得x2-x-2=1,解得x=2或-1,
∵x+1≠1,即x≠-1,
∴x=2.
此题考查的是对分式的值为1的条件的理解和因式分解的方法的运用,该类型的题易忽略分母不为1这个条件.
二、解答题(本大题共3个小题,共30分)
24、y=x+
【解析】
试题分析:根据正比例函数的定义设y=k(x+1)(k≠0),然后把x、y的值代入求出k的值,再整理即可得解.
解:由题意,设y=k(x+1),把x=1,y=3代入,得2k=3,
∴k=
∴y与x的函数关系式为.
考点:待定系数法求一次函数解析式.
25、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.
【解析】
(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;
(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.
(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.
【详解】
解:(1)设函数的关系式为y=kx+b,
则由题意,得 解得,
∴一次函数的关系式为y=5x-4;
(2)所作图形如图.
(3)∵0≤x≤2,
∴y的取值范围是:-4≤y≤1.
故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.
本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.
26、
【解析】
先根据分式的混合运算法则进行化简,注意先做小括号里面的,然后代入求值即可.
【详解】
解:
=
=
=
当a=6时,原式=.
本题考查分式的化简求值,掌握分式混合运算的运算法则和顺序正确计算是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
甲
1
78
1
3
86
93
乙
3
81
84
86
3
87
1
2
3
4
5
6
甲
1
78
1
3
86
93
乙
3
81
84
86
3
87
同学
平均数
中位数
众数
方差
甲
84
1.5
__________
2.3
乙
84
3.5
3
__________
安徽省蚌埠市禹会区2024-2025学年九年级数学第一学期开学考试模拟试题【含答案】: 这是一份安徽省蚌埠市禹会区2024-2025学年九年级数学第一学期开学考试模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市禹会区2023-2024学年数学九上期末质量跟踪监视模拟试题含答案: 这是一份安徽省蚌埠市禹会区2023-2024学年数学九上期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若,且,则的值是,求出函数解析式.等内容,欢迎下载使用。
安徽省蚌埠市禹会区2023-2024学年数学九上期末综合测试试题含答案: 这是一份安徽省蚌埠市禹会区2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔,将抛物线y=2-2向左平移等内容,欢迎下载使用。