安徽省蚌埠市固镇县第三中学2025届数学九上开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)点A(1,-2)关于x轴对称的点的坐标是( )
A.(1,-2)B.(-1,2)C.(-1,-2)D.(1,2)
2、(4分)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()
A.,B.,C.,D.,
3、(4分)某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )
A.4小时B.4.4小时C.4.8小时D.5小时
4、(4分)已知平行四边形ABCD中,∠B=2∠A,则∠A=( )
A.36°B.60°C.45°D.80°
5、(4分)若关于的一元二次方程有解,则的值可为( )
A.B.C.D.
6、(4分)有一个正五边形和一个正方形边长相等,如图放置,则的值是()
A.B.C.D.
7、(4分)下列图案中既是中心对称图形,又是轴对称图形的是( )
A.B.
C.D.
8、(4分)如果a>b,那么下列结论中,错误的是( )
A.a﹣3>b﹣3B.3a>3bC.D.﹣a>﹣b
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.
10、(4分)的倒数是_____.
11、(4分)若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.
12、(4分)如图,△ABC中,AB=AC,点B在y轴上,点A、C在反比例函数y=(k>0,x>0)的图象上,且BC∥x轴.若点C横坐标为3,△ABC的面积为,则k的值为______.
13、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)求不等式(2x﹣1)(x+1)>0的解集.
解:根据“同号两数相乘,积为正”可得:①或 ②.
解①得x>;解②得x<﹣1.
∴不等式的解集为x>或x<﹣1.
请你仿照上述方法解决下列问题:
(1)求不等式(2x﹣1)(x+1)<0的解集.
(2)求不等式≥0的解集.
15、(8分)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1)在这次调查中,一共抽查了 名学生.
(2)请你补全条形统计图.
(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 度.
(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?
16、(8分)某班开展勤俭节约的活动,对每个同学的一天的消费情况进行调查,得到统计图如图所示:
(1)求该班的总人数;
(2)将条形图补充完整,并写出消费金额的中位数;
(3)该班这一天平均每人消费多少元?
17、(10分)化简与解方程:
(1).
(2)
18、(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知的顶点坐标分别是,,.过点的直线与相交于点.若分的面积比为,则点的坐标为________.
20、(4分)如图,在平面直角坐标系xOy中,平行四边形ABCD的四个顶点A,B,C,D是整点(横、纵坐标都是整数),则平行四边形ABCD的面积是_____
21、(4分)如图,在直角坐标系中,正方形、的顶点均在直线上,顶点在轴上,若点的坐标为,点的坐标为,那么点的坐标为____,点的坐标为__________.
22、(4分)体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.
23、(4分)如图,已知图中的每个小方格都是边长为工的小正方形,每个小正方形的顶点称为格点,若与是位似图形,且顶点都在格点上,则位似中心的坐标是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)解不等式组:,并在数轴上表示出它的解集。
25、(10分)因式分解是数学解题的一种重要工具,掌握不同因式分解的方法对数学解题有着重要的意义.我们常见的因式分解方法有:提公因式法、公式法、分组分解法、十字相乘法等.在此,介绍一种方法叫“试根法”.例:,当时,整式的值为0,所以,多项式有因式,设
,展开后可得,所以,根据上述引例,请你分解因式:
(1);
(2).
26、(12分)物理兴趣小组位同学在实验操作中的得分情况如下表:
问:(1)这位同学实验操作得分的众数是 ,中位数是
(2)这位同学实验操作得分的平均分是多少?
(3)将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据关于横轴对称的点,横坐标不变,纵坐标变成相反数进行求解即可.
【详解】
点P(m,n)关于x轴对称点的坐标P′(m,-n),
所以点A(1,-2)关于x轴对称的点的坐标是(1,2),
故选D.
2、A
【解析】
试题解析:一次函数y=kx+b-x即为y=(k-1)x+b,
∵函数值y随x的增大而增大,
∴k-1>1,解得k>1;
∵图象与x轴的正半轴相交,
∴图象与y轴的负半轴相交,
∴b<1.
故选A.
3、B
【解析】
分析:由图中可以看出,2小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时时,物资调进完毕,仓库还剩10吨,说明调出速度为:(60-10)÷2吨,需要时间为:60÷25时,由此即可求出答案.
解答:解:物资一共有60吨,调出速度为:(60-10)÷2=25吨,需要时间为:60÷25=2.4(时)
∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4小时.
4、B
【解析】
根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.
【详解】
∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.
∵∠B=2∠A,∴∠A=60°.
故选B.
本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.
5、A
【解析】
根据判别式的意义得到△,然后解不等式求出的范围后对各选项进行判断.
【详解】
解:根据题意得:△,
解得.
故选:.
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.
6、B
【解析】
∠1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解.
【详解】
解:正五边形的内角的度数是
正方形的内角是90°,
则∠1=108°-90°=18°.
故选:B.
本题考查了多边形的内角和定理,求得正五边形的内角的度数是关键.
7、C
【解析】
判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合
A、是轴对称图形,不是中心对称图形,故错误;
B、是轴对称图形,不是中心对称图形,故错误;
C、是轴对称图形,又是中心对称图形,故正确;
D、是轴对称图形,不是中心对称图形,故错误.
故选C.
8、D
【解析】
分析:根据不等式的基本性质判断,不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.
详解:A、不等式两边加(或减)同一个数(或式子),不等号的方向不变,a>b两边同时减3,不等号的方向不变,所以a-3>b-3正确;
B、C、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b和正确;
D、不等式两边乘(或除以)同一个负数,不等号的方向改变,a>b两边同乘以-1得到-a<-b,所以-a>-b错误;故选D.
点睛:不等式的性质运用时注意:必须是加上,减去或乘以或除以同一个数或式子;另外要注意不等号的方向是否变化.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
【详解】
解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC-BE=5-3=1,
故答案为:1.
本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.
10、
【解析】
分析:根据倒数的意义或二次根式的化简进行计算即可.
详解:因为×=1
所以的倒数为.
故答案为.
分析:此题主要考查了求一个数的倒数,关键是明确倒数的意义,乘积为1的两数互为倒数.
11、1分米或分米.
【解析】
分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
2是斜边时,此直角三角形斜边上的中线长=×2=1分米,
2是直角边时,斜边=,
此直角三角形斜边上的中线长=×分米,
综上所述,此直角三角形斜边上的中线长为1分米或分米.
故答案为1分米或分米.
本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.
12、.
【解析】
先利用面积求出△ABC的高h,然后设出C点的坐标,进而可写出点A的坐标,再根据点A,C都在反比例函数图象上,建立方程求解即可.
【详解】
设△ABC的高为h,
∵S△ABC=BC•h=3h=,
∴h=.
∵ ,
∴点A的横坐标为 .
设点C(3,m),则点A(,m+),
∵点A、C在反比例函数y=(k>0,x>0)的图象上,
则k=3m=(m+),
解得 ,
则k=3m=,
故答案为:.
本题主要考查反比例函数与几何综合,找到A,C坐标之间的关系并能够利用方程的思想是解题的关键.
13、1
【解析】
先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
【详解】
解不等式,得:,
解不等式,得:,
∵不等式组的解集为,
∴,
解得,
故答案为:1.
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)﹣1<x<;(2)x≥1或x<﹣2.
【解析】
(1)、(2)根据题意得出关于x的不等式组,求出x的取值范围即可.
【详解】
解:(1)根据“异号两数相乘,积为负”可得①或②,
解①得不等式组无解;解②得,﹣1<x<;
(2)根据“同号两数相除,积为正”可得①,②,
解①得,x≥1,解②得,x<﹣2,
故不等式组的解集为:x≥1或x<﹣2.
故答案为(1)﹣1<x<;(2)x≥1或x<﹣2.
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
15、 (1)50人;(2)见解析;(3)115.2;(4)1.
【解析】
(1)用喜欢声乐的人数除以它所占的百分比得到调查的总人数;
(2)先计算出喜欢戏曲的人数,然后补全条形统计图;
(3)用360度乘以喜欢乐器的人数所占得到百分比得到扇形统计图中喜欢“乐器”部分扇形的圆心角的度数;
(4)用1200乘以样本中喜欢舞蹈的人数所占的百分比即可.
【详解】
(1),
所以在这次调查中,一共抽查了50名学生;
(2)喜欢戏曲的人数为(人),
条形统计图为:
(3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为;
故答案为50;115.2;
(4),
所以估计该校1200名学生中喜欢“舞蹈”项目的共1名学生.
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图.
16、(1)50;(2)图详见解析,12.5;(3)该班这一天平均每人消费13.1元.
【解析】
(1)根据C类有14人,占28%,即可求得该班的总人数;(2)根据(1)中的答案可以求得消费10元的人数,从而可以将条形统计图补充完整,进而求得消费金额的中位数;(3)根据加权平均数的计算方法可以求得该班这一天平均每人消费的金额.
【详解】
(1)由题意可得,
该班的总人数为:14÷28%=50,
即该班的总人数是50;
(2)消费10元的有:50-9-14-7-4=16(人),
补充完整的统计图如图所示,
消费金额的中位数是:=12.5;
(3)由题意可得,
该班这一天平均每人消费:=13.1(元),
即该班这一天平均每人消费13.1元.
本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1);(2)x=1.
【解析】
根据分式的加减法则进行计算即可
【详解】
解:(1)原式=
=
=
= ;
(2)两边都乘以x﹣2,得:x﹣3+x﹣2=﹣3,
解得:x=1,
检验:当x=1时,x﹣2=﹣1≠0,
所以分式方程的解为x=1.
本题考查分式的加减法,掌握运算法则是解题关键
18、(1)反比例函数为;一次函数解析式为y=﹣x﹣1;(2)x<﹣2或0<x<1.
【解析】
(1)由A的坐标易求反比例函数解析式,从而求B点坐标,进而求一次函数的解析式;
(2)观察图象,找出一次函数的图象在反比例函数的图象上方时,x的取值即可.
【详解】
解:(1)把A(﹣2,1)代入y=,
得m=﹣2,
即反比例函数为y=﹣,
将B(1,n)代入y=﹣,解得n=﹣2,
即B(1,﹣2),
把A(﹣2,1),B(1,﹣2)代入y=kx+b,得
解得k=﹣1,b=﹣1,
所以y=﹣x﹣1;
(2)由图象可知:当一次函数的值>反比例函数的值时,x<﹣2或0<x<1.
此题考查的是反比例函数和一次函数的综合题,掌握利用待定系数法求一次函数、反比例函数的解析式和根据图象求自变量的取值范围是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(5,-)或(5,-).
【解析】
由AE分△ABC的面积比为1:2,可得出BE:CE=1:2或BE:CE=2:1,由点B,C的坐标可得出线段BC的长度,再由BE:CE=1:2或BE:CE=2:1结合点B的坐标可得出点E的坐标,此题得解.
【详解】
∵AE分△ABC的面积比为1:2,点E在线段BC上,
∴BE:CE=1:2或BE:CE=2:1.
∵B(5,1),C(5,-6),
∴BC=1-(-6)=2.
当BE:CE=1:2时,点E的坐标为(5,1-×2),即(5,-);
当BE:CE=2:1时,点E的坐标为(5,1-×2),即(5,-).
故答案为:(5,-)或(5,-).
本题考查了比例的性质以及三角形的面积,由三角形的面积比找出BE:CE的比值是解题的关键.
20、1
【解析】
结合网格特点利用平行四边形的面积公式进行求解即可.
【详解】
由题意AD=5,平行四边形ABCD的AD边上的高为3,
∴S平行四边形ABCD=5×3=1,
故答案为:1.
本题考查了网格问题,平行四边形的面积,熟练掌握网格的结构特征以及平行四边形的面积公式是解题的关键.
21、
【解析】
先求出点、的坐标,代入求出解析式,根据=1,(3,2)依次求出点点、、、的纵坐标及横坐标,得到规律即可得到答案.
【详解】
∵(1,1),(3,2),
∴正方形的边长是1,正方形的边长是2,
∴(0,1),(1,2),
将点、的坐标代入得,
解得,
∴直线解析式是y=x+1,
∵=1,(3,2),
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
∴的纵坐标是,横坐标是,
由此得到的纵坐标是,横坐标是,
故答案为:(7,8),(,).
此题考查一次函数的定义,函数图象,直角坐标系中点的坐标规律,能根据图象求出点的坐标并总结规律用于解题是关键.
22、1
【解析】
根据中位数的定义求解可得.
【详解】
解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,
∴第10个、11个数据均为40,
∵小于40的有6个,
∴第7、8、9、10、11个数据一定为40,
∴仰卧起坐次数为40次的女生人数至少有1人,
故答案为:1.
本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.
23、(8,0)
【解析】
连接任意两对对应点,看连线的交点为那一点即为位似中心.
【详解】
解:连接BB1,A1A,易得交点为(8,0).
故答案为:(8,0).
用到的知识点为:位似中心为位似图形上任意两对对应点连线的交点.
二、解答题(本大题共3个小题,共30分)
24、-2<x≤3,数轴上表示见解析.
【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.
【详解】
解: ,
解①得,x>-2,
解②得,x≤3,
则不等式组的解集为-2<x≤3,
在数轴上表示为:
.
故答案为:-2<x≤3,数轴上表示见解析.
本题考查一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.
25、(1);(2)
【解析】
(1)先找出x=1时,整式的值为0,进而找出一个因式,再将多项式分解因式,即可得出结论;
(2)先找出x=-1时,整式的值为0,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.
【详解】
(1)当x=1时,整式的值为0,所以,多项式有因式(x-1),
于是2x2-1x+1=(x-1)(2x-1);
(2)当x=-1时,整式的值为0,
∴多项式x1+1x2+1x+1中有因式(x+1),
于是可设x1+1x2+1x+1=(x+1)(x2+mx+1)=x1+(m+1)x2+(1+m)x+1,
∴m+1=1,,
∴m=2,
∴x1+1x2+1x+1=(x+1)(x2+2x+1)=(x+1)1.
此题考查了用“试根法”分解因式,考查了学生的阅读理解能力以及知识的迁移能力.
26、(1)9,9;(2)8.75分;(3)54°
【解析】
(1)根据众数及中位数的定义依据表格即可得到众数,中位数;
(2)根据加权平均数的公式计算即可;
(3)利用圆心角度数=百分比乘以360°计算即可.
【详解】
(1)∵得9分的人数最多,∴得分的众数是9;
∵20个数据中第10个和第11个数据都是9,∴数据的中位数是=9,
故答案为:9,9;
(2)平均分=(分);
(3)扇形①的圆心角度数是.
此题考查统计数据的计算,正确掌握众数的定义,中位数的定义,加权平均数的计算公式,扇形圆心角度数的计算公式是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
得分(分)
人数(人)
安徽省固镇县2024年数学九上开学质量跟踪监视试题【含答案】: 这是一份安徽省固镇县2024年数学九上开学质量跟踪监视试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市禹会区2025届九上数学开学复习检测模拟试题【含答案】: 这是一份安徽省蚌埠市禹会区2025届九上数学开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
安徽省蚌埠市淮上区2024年数学九上开学检测模拟试题【含答案】: 这是一份安徽省蚌埠市淮上区2024年数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。