2025届重庆江南新区九上数学开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.为了解昆明市中学生的睡眠情况,应该采用普查的方式
B.数据2,1,0,3,4的平均数是3
C.一组数据1,5,3,2,3,4,8的众数是3
D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
2、(4分)如图,在中,已知,分别为边,的中点,连结,若,则等于( )
A.70ºB.67. 5ºC.65ºD.60º
3、(4分)两个一次函数与,它们在同一直角坐标系中的图象可能是( )
A.B.
C.D.
4、(4分)下列计算正确的是( )
A.B.C.D.
5、(4分)如图,以正方形的顶点为直角顶点,作等腰直角三角形,连接、,当、、三点在--条直线上时,若,,则正方形的面积是( )
A.B.C.D.
6、(4分)直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为( )
A.B.C.D.
7、(4分)将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( )
A.3,5,6B.2,3,5C.5,6,7D.6,8,10
8、(4分)下列图形中,是中心对称图形但不是轴对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:=______.
10、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.
11、(4分)函数y=中,自变量x的取值范围是_____.
12、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
13、(4分)若正多边形的一个内角等于150°,则这个正多边形的边数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平行四边形中,连接,,且,是的中点,是延长线上一点,且.求证:.
15、(8分)在所给的网格中,每个小正方形的网格边长都为1,按要求画出四边形,使它的四个顶点都在小正方形的顶点上.
(1)在网格1中画出面积为20的菱形(非正方形);
(2)在网格2中画出以线段为对角线、面积是24的矩形;直接写出矩形的周长 .
16、(8分)如图,在的方格中,的顶点均在格点上.试按要求画出线段(,均为格点),各画出一条即可.
17、(10分)计算:(1) ; (2) .
18、(10分)为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,1.通过数据分析,列表如下:
(1)直接写出表中a,b,c的值;
(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.
20、(4分)如图,经过点B(-2,0)的直线与直线相交于点A(-1,-2),则不等式的解集为 .
21、(4分)如图,在▱ABCD中,∠B=50°,CE平分∠BCD,交AD于E,则∠DCE的度数是______.
22、(4分)如图,直线与坐标轴相交于点,将沿直线翻折到的位置,当点的坐标为时,直线的函数解析式是_________________.
23、(4分)数据2,4,3,x,7,8,10的众数为3,则中位数是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在菱形ABCD中,AC是对角线.
(1)如图①,若AB=6,则菱形ABCD的周长为______;若∠DAB=70º,则∠D的度数是_____;∠DCA的度数是____;
(2)如图②,P是AB上一点,连接DP交对角线AC于点E,连接EB,求证: ∠APD=∠EBC.
25、(10分)计算:2×÷3﹣(﹣2.
26、(12分)计算:﹣(π﹣2019)0+2﹣1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据抽样调查、平均数、众数的定义及方差的意义解答可得.
【详解】
解:A、为了解昆明市中学生的睡眠情况,应该采用抽样调查的方式,此选项错误;
B、数据2,1,0,3,4的平均数是2,此选项错误;
C、一组数据1,5,3,2,3,4,8的众数是3,此选项正确;
D、在连续5次数学周考测试中,两名同学的平均分相同,方差较小的同学数学成绩更稳定,此选项错误;
故选C.
此题考查了抽样调查、平均数、众数和方差的定义.平均数是所有数据的和除以数据的个数.一组数据中出现次数最多的数据叫做众数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
2、A
【解析】
由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出的度数.
【详解】
∵D,E分别为AB,AC的中点,
∴DE是三角形的中位线,
∴DE∥BC,
∴∠AED=∠C=70°,
故选A
此题考查平行线的性质,三角形中位线定理,难度不大
3、C
【解析】
根据函数图象判断a、b的符号,两个函数的图象符号相同即是正确,否则不正确.
【详解】
A、若a>0,b<0,符合,不符合,故不符合题意;
B、若a>0,b>0,符合,不符合,故不符合题意;
C、若a>0,b<0,符合,符合,故符合题意;
D、若a<0,b>0,符合,不符合,故不符合题意;
故选:C.
此题考查一次函数的性质,能根据一次函数的解析式y=kx+b中k、b的符号判断函数图象所经过的象限,当k>0时函数图象过一、三象限,k<0时函数图象过二、四象限;当b>0时与y轴正半轴相交,b<0时与y轴负半轴相交.
4、B
【解析】
分析:根据二次根式的性质,二次根式的乘法,二次根式的除法逐项计算即可.
详解: A. ,故不正确;
B. ,故正确;
C. ,故不正确;
D. ,故不正确;
故选B.
点睛: 本题考查了二次根式的性质与计算,熟练掌握二次根式的性质、二次根式的乘除法法则是解答本题的关键.
5、C
【解析】
由“ASA”可证△ABF≌△CBE,可得AF=CE=3,由等腰直角三角形的性质可得BH=FH=1,由勾股定理可求BC2=5,即可求正方形ABCD的面积
【详解】
解:∵四边形ABCD是正方形,△BEF是等腰直角三角形
∴AB=BC,BE=BF,∠ABC=∠EBF=90°,
∴∠ABF=∠EBC,且AB=BC,BE=BF
∴△ABF≌△CBE(SAS)
∴AF=CE=3
如图,过点BH⊥EC于H,
∵BE=BF=,BH⊥EC
∴BH=FH=1
∴CH=EC-EH=2
∵BC2=BH2+CH2=5,
∴正方形ABCD的面积=5.
故选择:C.
本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,证明△ABF≌△CBE是本题的关键.
6、C
【解析】
由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.
【详解】
两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.
故选:C.
此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
7、D
【解析】
判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.
【详解】
A.32+52=34≠62,故不能组成直角三角形,错误;
B.22+32≠52,故不能组成直角三角形,错误;
C.52+62≠72,故不能组成直角三角形,错误;
D.62+82=100=102,故能组成直角三角形,正确.
故选D.
本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8、A
【解析】
解: B、C、D都是轴对称图形,即对称轴如下红色线;
故选A.
此题考查轴对称图形和中心对称图形的概念.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x(x+2)(x﹣2).
【解析】
试题分析:==x(x+2)(x﹣2).故答案为x(x+2)(x﹣2).
考点:提公因式法与公式法的综合运用;因式分解.
10、
【解析】
首先根据勾股定理计算出的长,进而得到的长,再根据点表示,可得点表示的数.
【详解】
解:由勾股定理得:,
则,
点表示,
点表示,
故答案为:.
此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边边长的平方.
11、x≥1.
【解析】
根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【详解】
解:根据题意得,x﹣1≥0且x≠0,
解得x≥1且x≠0,
所以,自变量x的取值范围是x≥1.
故答案为x≥1.
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
12、
【解析】
根据平行四边形的性质可得到答案.
【详解】
∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
13、1.
【解析】
首先根据求出外角度数,再利用外角和定理求出边数.
【详解】
正多边形的一个内角等于,
它的外角是:,
它的边数是:.
故答案为:1.
此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.
三、解答题(本大题共5个小题,共48分)
14、证明步骤见解析
【解析】
过E分别做CF和DC延长线的垂线,垂足分别是G,H,利用HL证明Rt△FGE≌Rt△DHE,得到∠GFE=∠EDH,再根据三角形内角和得出∠FED=∠FCD=90°,即证明.
【详解】
解:如图,过E分别做CF和DC延长线的垂线,垂足分别是G,H,
∵AC=CD,AC⊥CD,
∴∠CAD=∠CDA=∠ACB=∠BCH=45°,
∵EG⊥CF,EH⊥CH,
∴EH=EG,
∵DE=EF,
∴Rt△FGE≌Rt△DHE(HL),
∴∠GFE=∠EDH,
∵∠FME=∠DMC
∴∠FED=∠FCD=90°,
∴EF⊥ED.
本题考查了全等三角形的判定和性质,三角形内角和,中等难度,证明三角形全等是解题关键.
15、(1)见解析;(2)
【解析】
(1)根据边长为5,高为4的菱形面积为20作图即可;
(2)边长为和的矩形对角线AC长为,面积为24,据此作图即可.
【详解】
解:(1)如图1所示,菱形即为所求;
(2)如图2所示,矩形即为所求.
∵,
∴矩形的周长为.
故答案为:.
本题考查的知识点是菱形的性质以及作图,根据题意计算得出菱形的边长和矩形的边长是解此题的关键.
16、见解析
【解析】
图1,从图中可得到AC边的中点在格点上设为E,过E作AB的平行线即可在格点上找到F;图2,EC=,EF=,FC=,借助勾股定理确定F点.
【详解】
解:如图:
本题考查三角形作图;在格点中利用勾股定理,三角形的性质作平行、垂直是解题的关键.
17、(1)0;(2)
【解析】
(1)根据二次根式的乘法公式:和合并同类二次根式法则计算即可;
(2)二次根式的乘法公式:、除法公式和合并同类二次根式法则计算即可.
【详解】
解:(1)
=
=0
(2)
=
=
=
此题考查的是二次根式的加减运算,掌握二次根式的乘法公式:、除法公式和合并同类二次根式法则是解决此题的关键.
18、(1)a=86,b=85,c=85;(2)八(2)班前5名同学的成绩较好,理由见解析.
【解析】
【分析】(1)根据平均数、中位数、众数的概念进行解答即可;
(2)根据它们的方差进行判断即可解答本题.
【详解】(1)a=,
将八(1)的成绩排序77、85、85、86、92,
可知中位数是85,众数是85,
所以b=85,c=85;
(2)∵22.8>19.2,
∴八(2)班前5名同学的成绩较好.
【点睛】本题考查了平均数、众数、中位数、方差,解题的关键是明确题意,熟练掌握平均数、众数、中位数的求解方法.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2.1
【解析】
试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.
解:过点D作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC
∴CD=DE
又BD:DC=2:1,BC=7.8cm
∴DC=7.8÷(2+1)=7.8÷3=2.1cm.
∴DE=DC=2.1cm.
故填2.1.
点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.
20、
【解析】
分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围.
由图象可知,此时.
21、65°
【解析】
利用已知条件易证△DEC是等腰三角形,再由∠B的度数可求出∠D的度数,进而可根据等腰三角形的性质求出∠DCE的度数.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,∠B=∠C=50°,
∴∠DEC=∠ECB
∵CE平分∠BCD交AD于点E,
∴∠DCE=∠BCE,
∴∠DEC=∠DCE,
∴,
故答案为:.
本题考查的知识点是平行四边形的性质,解题关键是利用等腰三角形性质进行解答.
22、.
【解析】
首先设A(0,y),B(x,0)进而计算AC的长度,可列方程求解y的值,同理计算BC的长度列出方程即可计算x的值,进而确定直线AB的解析式.
【详解】
解:设A(0,y),B(x,0)
则AC2= ,根据题意OA=AC=y
所以可得 解得y=2
再根据BC2= ,根据题意OB=BC=x
所以可得 解得x=2
所以可得A(0,2 )B(2,0)
采用待定系数法可得 即
所以一次函数的解析式为
故答案为
本题主要考查一次函数的解析式求解,关键在于利用直角三角形,求解A、B点的坐标.
23、1
【解析】
先根据众数是一组数据中出现次数最多的数据,求得x,再由中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
解:∵这组数据2,1,3,x,7,8,10的众数为3,
∴x=3,
从小到大排列此数据为:2,3,3,1,7,7,10,
处于中间位置的数是1,
∴这组数据的中位数是1;
故答案为:1.
本题主要考查数据统计中的众数和中位数的计算,关键在于根据题意求出未知数.
二、解答题(本大题共3个小题,共30分)
24、(1)24;110°;35°;(2)见解析.
【解析】
(1)由菱形的性质可求解;
(2)由“SAS”可得△DCE≌△BCE,可得∠CDP=∠CBE,由平行线的性质可得∠CDP=∠APD=∠CBE.
【详解】
解:(1)∵四边形ABCD是菱形
∴AB=BC=CD=AD=6,∠DAB+∠ADC=180°,
∠DCA=∠DCB=∠DAB=35°
∴菱形ABCD的周长=4×6=24,
∠ADC=180°-70°=110°,
故答案为:24,110°,35°
(2)证明:∵菱形ABCD
∴CD//AB,CD=CB,CA平分∠BCD
∴∠CDE=∠APD,∠ACD=∠ACB
∵CD=CB,∠BCE=∠DCE,CE=CE
∴△CBE≌△CDE(SAS)
∴∠CBE=∠CDE
∴∠CBE=∠APD.
本题考查了菱形的性质,全等三角形判定和性质,熟练运用菱形的性质是本题的关键.
25、
【解析】
利用二次根式的乘除法则和完全平方公式计算.
【详解】
原式=2××× -(2-2+3)-2
=-1+2-2
=-1.
本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
26、
【解析】
本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
【详解】
解:原式.
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
题号
一
二
三
四
五
总分
得分
班级
平均分
中位数
众数
方差
八(1)
85
b
c
22.8
八(2)
a
85
85
19.2
2025届重庆綦江县联考数学九上开学监测模拟试题【含答案】: 这是一份2025届重庆綦江县联考数学九上开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届重庆江南新区联盟九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2025届重庆江南新区联盟九年级数学第一学期开学学业水平测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届天津市滨海新区九上数学开学监测模拟试题【含答案】: 这是一份2025届天津市滨海新区九上数学开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。