重庆市江北新区联盟2024-2025学年数学九上开学综合测试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形中,是边的中点,是边上一点,,,,则线段的长为( )
A.B.C.D.
2、(4分)下列图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
3、(4分)下列各式:中,分式的有( )
A.1 个B.2 个C.3 个D.4 个
4、(4分)菱形和矩形一定都具有的性质是( )
A.对角线相等B.对角线互相垂直
C.对角线互相平分D.对角线互相平分且相等
5、(4分)武汉某中学体育特长生的年龄,经统计有12、13、14、15四种年龄,统计结果如图.根据图中信息可以判断该批队员的年龄的众数和中位数为( )
A.8和6B.15和14C.8和14D.15和13.5
6、(4分)下列由左边到右边的变形,属于因式分解的是( )
A.B.
C.D.
7、(4分)将方程x2+4x+3=0配方后,原方程变形为( )
A.B.C.D.
8、(4分)当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知实数m,n满足3m2+6m-5=0,3n2+6n-5=0,则________
10、(4分)已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ .
11、(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是________ .
12、(4分)根式+1的相反数是_____.
13、(4分)边长为2的等边三角形的面积为__________
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:(单位:分)
若欲从中表扬2人,请你从平均数的角度分析,那两人将被表扬?
(2)为了提现科学差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数,请你从折合平均数的角度分析,哪两人将被表扬?
15、(8分)如图1,在直角坐标系中放入一个边长AB长为3,BC长为5的矩形纸片ABCD,使得BC、AB所在直线分别与x、y轴重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.
(1)求折痕AE所在直线与x轴交点的坐标;
(2)如图2,过D作DG⊥AF,求DG的长度;
(3)将矩形ABCD水平向右移动n个单位,则点B坐标为(n,1),其中n>1.如图3所示,连接OA,若△OAF是等腰三角形,试求点B的坐标.
16、(8分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园(围墙最长可利用),现在已备足可以砌长的墙的材料,恰好用完,试求的长,使矩形花园的面积为.
17、(10分)如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.
18、(10分)某城镇在对一项工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲队工程款2万元,付乙队工程款1.5万元.现有三种施工方案:()由甲队单独完成这项工程,恰好如期完工;()由乙队单独完成这项工程,比规定工期多6天;()由甲乙两队后,剩下的由乙队单独做,也正好能如期完工.小聪同学设规定工期为天,依题意列出方程:.
(1)请将()中被墨水污染的部分补充出来:________;
(2)你认为三种施工方案中,哪种方案既能如期完工,又节省工程款?说明你的理由.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)观察式子,,,……,根据你发现的规律可知,第个式子为______.
20、(4分)(2011山东烟台,17,4分)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 .
21、(4分)一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.
22、(4分)使代数式有意义的x的取值范围是_____.
23、(4分)如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交BC于F.
(1)求证:△ABE≌△CDF;
(2)若AB=6,BC=8,求DE的长.
25、(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:
请你根据图中的信息,解答下列问题:
(1)补全条形图;
(2)直接写出在这次抽测中,测试成绩的众数和中位数;
(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?
26、(12分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫作格点.的三个顶点都在格点上,将绕点按顺时针方向旋转得到.
(1)在正方形网格中,画出;
(2)画出向左平移4格后的;
(3)计算线段在变换到的过程中扫过区域的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
延长﹑交于点,先证得得出,,再由勾股定理得,然后设,根据勾股定理列出方程得解.
【详解】
解:延长﹑交于点,
则,
∴,,
∵,
∴,
∴,
∴,
∴由勾股定理得,
设,
在和中,
则,
解得.
故选:A
本题考查了勾股定理的应用,添加辅助线构造全等三角形,运用勾股定理列出方程是解本题的关键.
2、B
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A.是轴对称图形,不是中心对称图形,故此选项错误;
B.是轴对称图形,也是中心对称图形,故此选项正确;
C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;
D.是轴对称图形,不是中心对称图形,故此选项错误.
故选B.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.
3、B
【解析】
根据分式定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.
【详解】
是分式,共2个,故选:B.
本题考查分式的定义,解题的关键是掌握分式的定义.
4、C
【解析】
菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.
【详解】
菱形和矩形一定都具有的性质是对角线互相平分.
故选C.
本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.
5、B
【解析】
根据众数和中位数的定义解答即可.
【详解】
解:15岁的队员最多,是8人,所以众数是15岁,20人中按照年龄从小到大排列,第10、11两人的年龄都是14岁,所以中位数是14岁.
故选B.
本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
6、D
【解析】
根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,判断求解.
【详解】
解:A、右边不是积的形式,故本选项错误;
B、右边不是积的形式,故本选项错误;
C、x2-4y2=(x+2y)(x-2y),故本项错误;
D、是因式分解,故本选项正确.
故选:D.
此题考查因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.
7、A
【解析】
把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方.
【详解】
移项得,x2+4x=−3,
配方得,x2+4x+4=−3+4,
即(x+2)2=1.
故答案选A.
本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程.
8、C
【解析】
根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.
【详解】
解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.
故选:C.
此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
首先根据二元一次方程的根与系数的关系,表示m+n和mn的形式,再代入计算即可.
【详解】
根据题意可得,3m2+6m-5=0,3n2+6n-5=0
所以可得m和n是方程的两个根
所以m+n=-2,mn=
原式=
故答案为
本题主要考查根与系数的关系,其中 这是关键,应当熟练掌握.
10、① 一组邻边相等的矩形是正方形
【解析】
根据正方形的判定定理添加一个条件使得矩形是菱形即可.
【详解】
解:∵四边形ABCD是矩形,AB=BC,
∴矩形ABCD为正方形(一组邻边相等的矩形是正方形).
故答案为:①,一组邻边相等的矩形是正方形.
本题考查了正方形的判定定理,熟练掌握正方形的判定定理即可得到结论.
11、
【解析】
根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.
【详解】
解:∵PE⊥AB,PF⊥AC,∠BAC=90°,
∴∠EAF=∠AEP=∠AFP=90°,
∴四边形AEPF是矩形,
∴EF,AP互相平分.且EF=AP,
∴EF,AP的交点就是M点,
∵当AP的值最小时,AM的值就最小,
∴当AP⊥BC时,AP的值最小,即AM的值最小.
∵AP×BC=AB×AC,
∴AP×BC=AB×AC,
在Rt△ABC中,由勾股定理,得BC==10,
∵AB=6,AC=8,
∴10AP=6×8,
∴AP=
∴AM=,
故答案为:.
考点:(1)、矩形的性质的运用;(2)、勾股定理的运用;(3)、三角形的面积公式
12、
【解析】
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
【详解】
解: +1的相反数是﹣﹣1,
故答案为:﹣﹣1.
本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.
13、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)应表扬乙、丙两人;(2)应表扬甲、丙两人
【解析】
(1)把各科分数相加,再除以4,求出各自的平均数即可;
(2)按比例计算出平均分,再判断即可.
【详解】
解:(1)甲:(分);
乙:(分);
丙:(分),
应表扬乙、丙两人.
(2)折合后甲:(分);
折合后乙:(分);
折合后丙甲:(分),
应表扬甲、丙两人.
此题考查算术平均数和加权平均数的计算,解题的关键是掌握加权平均数等于各数据与其权的积得和除以数据的个数.在计算时搞清楚数据对应的权.
15、(2)折痕AE所在直线与x轴交点的坐标为(9,2);(2)3;(3)点B(4,2)或B(2,2).
【解析】
(2)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=5,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x轴交点的坐标;
(2)判断出△DAG≌△AFB,即可得出结论;
(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.
【详解】
解:(2)∵四边形ABCD是矩形,
∴AD=CB=5,AB=DC=3,∠D=∠DCB=∠ABC=92°,
由折叠对称性:AF=AD=5,EF=DE,
在Rt△ABF中,BF==4,
∴CF=2,
设EC=x,则EF=3﹣x,
在Rt△ECF中,22+x2=(3﹣x)2,
解得:x=,
∴E点坐标为:(5,),
∴设AE所在直线解析式为:y=ax+b,
则,
解得:,
∴AE所在直线解析式为:y=x+3,
当y=2时,x=9,
故折痕AE所在直线与x轴交点的坐标为:(9,2);
(2)在△DAG和△AFB中
∵,
∴△DAG≌△AFB,
∴DG=AB=3;
(3)分三种情况讨论:
若AO=AF,
∵AB⊥OF,
∴BO=BF=4,
∴n=4,
∴B(4,2),
若OF=FA,则n+4=5,
解得:n=2,
∴B(2,2),
若AO=OF,
在Rt△AOB中,AO2=OB2+AB2=m2+9,
∴(n+4)2=n2+9,
解得:n=(n<2不合题意舍去),
综上所述,若△OAF是等腰三角形,n的值为n=4或2.
即点B(4,2)或B(2,2).
此题是四边形综合题,主要考查了待定系数法,折叠的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,利用勾股定理求出CE是解本题的关键.
16、的长为15米
【解析】
设AB=xm,列方程解答即可.
【详解】
解:设AB=xm,则BC=(50-2x)m,
根据题意可得,,
解得:,
当时,,
故(不合题意舍去),
答:的长为15米.
此题考查一元二次方程的实际应用,正确理解题意是列方程的关键.
17、证明见解析.
【解析】
根据平行四边形的判定推出四边形OBEC是平行四边形,根据菱形性质求出∠AOB=90°,根据矩形的判定推出即可.
【详解】
∵BE∥AC,CE∥DB,
∴四边形OBEC是平行四边形,
又∵四边形ABCD是菱形,且AC、BD是对角线,
∴AC⊥BD,
∴∠BOC=90°,
∴平行四边形OBEC是矩形.
本题考查了菱形性质,平行四边形的判定,矩形的判定的应用,主要考查学生的推理能力.
18、(1)合作5天;(2)方案(C)既能如期完工,又节省工程款.
【解析】
(1)设规定的工期为x天,根据题意得出的方程为:,可知被墨水污染的部分为:若甲、乙两队合作5天;
(2)根据题意先求得规定的天数,然后算出三种方案的价钱之后,再根据题意选择既按期完工又节省工程款的方案.
【详解】
(1)根据题意及所列的方程可知被墨水污染的部分为:甲、乙两队合作5天.
故答案是:甲、乙两队合作5天;
(2)设规定的工期为x天,
根据题意列出方程:,
解得:x=1.
经检验:x=1是原分式方程的解.
这三种施工方案需要的工程款为:
(A)2×1=60(万元);
(B)1.5×(1+6)=54(万元),但不能如期完工;
(C)2×5+1.5×1=55(万元).
综上所述,(C)方案是既按期完工又节省工程款的方案:即由乙队单独完成这项工程.
本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤,即①根据题意找出等量关系;②列出方程;③解出分式方程;④检验;⑤作答.注意:分式方程的解必须检验.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
分别找出分子指数规律和分母指数规律,再结合符号规律即可得出答案.
【详解】
∵,,,……,
∴第n个式子为(−1)n+1•
故答案为:(−1)n+1•.
主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律
20、2
【解析】
解:正方形为旋转对称图形,绕中心旋转每90°便与自身重合. 可判断每个阴影部分的面积为正方形面积的,这样可得答案填2.
21、y=2x+3
【解析】
根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.
【详解】
∵函数y=kx+b的图象平行于直线y=2x+1,
∴k=2,
将(-1,1)代入y=2x+b得:1=-2+b,
解得:b=3,
∴函数解析式为:y=2x+3,
故答案为:y=2x+3.
本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.
22、x≥0且x≠2
【解析】
根据二次根式有意义的条件可得x≥0,根据分式有意义的条件可得2x-1≠0,再解不等式即可.
【详解】
由题意得:x⩾0且2x−1≠0,
解得x⩾0且x≠,
故答案为x⩾0且x≠.
本题考查了二次根式有意义的条件,分式有意义的条件.牢记分式、二次根式成立的条件是解题的关键.
23、1
【解析】
试题分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,可得OA的长,然后由AB⊥AC,AB=8,AC=12,根据勾股定理可求得OB的长,继而求得答案.
解:∵四边形ABCD是平行四边形,AC=12,
∴OA=AC=6,BD=2OB,
∵AB⊥AC,AB=8,
∴OB===10,
∴BD=2OB=1.
故答案为:1.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析(2)2
【解析】
(1)首先由平行四边形的性质可得AD∥BC,AB=CD;∠A=∠C,再由条件利用SAS定理可判定△ABE≌△CDF;(2)由(1)可知 ∠EBF=∠AEB由平行线的性质和角平分线得出∠AEB=∠ABE,即可得出结果.
解:(1)证明:法一:
∵四边形ABCD是平行四边形
∴AD∥BC,AD=BC,∠A=∠C,,
∵BE∥DF,
∴四边形BEDF是平行四边形,
∴DE=BF,
∴AD-DE=BC-BF,
即:AE=CF,
∴△ABE≌△CDF(SAS).
法二:∵BE//FD ∴∠EBF=∠DFC
∵AD//BC ∴∠EBF=∠AEB
∴∠AEB=∠DFC
在▱ABCD中,∵∠A=∠C,AB=CD
∴ △ABE≌△CDF
(2)由(1)可知 ∠EBF=∠AEB
又∵BE平分∠EBF
∴∠EBF=∠ABE
∴∠AEB=∠ABE
∴AE=AB=6
又∵BC=AD=8
∴DE=2
“点睛”本题考查了平行四边形的判定与性质、等腰三角形的判定;熟记平行四边形的性质,证出AE=AB是解决(2)的关键.
25、(1)见解析;(2)众数:5,中位数:5;(3)该区体育中考选报引体向上的男生能获得满分的同学有810名.
【解析】
(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数确定a的值,再补全条形图即可;
(2)根据众数与中位数的定义求解即可;
(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.
【详解】
解:(1) 设引体向上6个的学生有x人,由题意得 ,解得x=50.
条形统计图补充如下:
(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;
共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5;
(3)(名)
答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.
本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.
26、(1)见解析;(2)见解析;(3).
【解析】
(1)直接利用旋转的性质得出对应点位置进而得出答案;
(2)利用平移的性质得出对应点位置进而得出答案;
(3)利用扇形面积求法得出答案.
【详解】
(1)如图所示:△AB'C'即为所求;
(2)如图所示:△A'B″C″即为所求;
(3)由勾股定理得AB=5,线段AB在变换到AB'的过程中扫过区域的面积为:π.
本题考查了旋转变换以及平移变换,正确得出对应点位置是解题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
语文
数学
英语
科学
甲
95
95
80
150
乙
105
90
90
139
丙
100
100
85
139
江苏省南京市江北新区2024-2025学年数学九上开学复习检测模拟试题【含答案】: 这是一份江苏省南京市江北新区2024-2025学年数学九上开学复习检测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江北新区联盟2024-2025学年数学九上开学复习检测模拟试题【含答案】: 这是一份江北新区联盟2024-2025学年数学九上开学复习检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年重庆市江北区新区联盟九上数学开学考试模拟试题【含答案】: 这是一份2024年重庆市江北区新区联盟九上数学开学考试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。