![2025届苏州工业园区数学九上开学经典试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16247110/0-1728812900786/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届苏州工业园区数学九上开学经典试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16247110/0-1728812900863/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届苏州工业园区数学九上开学经典试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16247110/0-1728812900896/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届苏州工业园区数学九上开学经典试题【含答案】
展开
这是一份2025届苏州工业园区数学九上开学经典试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,平行四边形的周长为40,的周长比的周长多10,则为( )
A.5B.20C.10D.15
2、(4分)甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:
甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.
其中正确的个数是
A.1个B.2个C.3个D.4个
3、(4分)如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=( )
A.12B.8C.4D.3
4、(4分)把一元二次方程配方后,下列变形正确的是( )
A.B.C.D.
5、(4分)测得某人一根头发的直径约为0.000 071 5米,该数用科学记数法可表示为( )
A.0.715×104B.0.715×10﹣4C.7.15×105D.7.15×10﹣5
6、(4分)下列几组由组成的三角形不是直角三角形的是( )
A.B.
C.D.
7、(4分)某园林队原计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比原计划提前3小时完成任务,若每人每小时绿化的面积相同,求每人每小时绿化的面积。若设每人每小时绿化的面积为平方米,根据题意下面所列方程正确的是( )
A.B.
C.D.
8、(4分)下列平面图形中,是中心对称图形的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某人参加一次应聘,计算机、英语、操作成绩(单位:分)分别为 80、90、82, 若三项成绩分别按 3:5:2,则她最后得分的平均分为_____.
10、(4分)在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的象限是________.
11、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
12、(4分)如图,将一个智屏手机抽象成一个的矩形,其中,,然后将它围绕顶点逆时针旋转一周,旋转过程中、、、的对应点依次为、、、,则当为直角三角形时,若旋转角为,则的大小为______.
13、(4分)在矩形ABCD中,AB=2,BC=6,直线EF经过对角线BD的中点O,分别交边AD,BC于点E,F,点G,H分别是OB,OD的中点,当四边形EGFH为矩形时,则BF的长_________________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:﹣3+2.
15、(8分)计算:2b﹣(4a+)(a>0,b>0).
16、(8分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.
(1)求证:△AEF≌△DCE.
(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.
17、(10分)(阅读理解)
对于任意正实数、,∵,
∴
∴,只有当时,等号成立.
(数学认识)
在(、均为正实数)中,若为定值,则,只有当时,有最小值.
(解决问题)
(1)若时,当_____________时,有最小值为_____________;
(2)如图,已知点在反比例函数的图像上,点在反比例函数的图像上,轴,过点作轴于点,过点作轴于点.求四边形周长的最小值.
18、(10分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿A→B→C所走的路程是____m.(结果保留根号)
20、(4分)如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.
21、(4分)化简________.
22、(4分)已知:线段AB,BC.
求作:平行四边形ABCD.
以下是甲、乙两同学的作业.
甲:
①以点C为圆心,AB长为半径作弧;
②以点A为圆心,BC长为半径作弧;
③两弧在BC上方交于点D,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图1)
乙:
①连接AC,作线段AC的垂直平分线,交AC于点M;
②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.
四边形ABCD即为所求平行四边形.(如图2)
老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.
23、(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分选手人数分别为a,b.
(1)请依据图表中的数据,求a,b的值.
(2)直接写出表中的m= ,n= .
(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
25、(10分)随着改革开放进程的推进,改变的不仅仅是人们的购物模式,就连支付方式也在时代的浪潮中发生着天翻地覆的改变,除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.
26、(12分)如图,在中,,,垂足分别为.求证四边形是矩形.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由于平行四边形的对角线互相平分,那么△AOB、△BOC的周长差,实际是AB、BC的差,结合平行四边形的周长,即可得解.
【详解】
在平行四边形ABCD中,
AO=OC,AB=CD,AD=BC,
∵△AOB的周长比△BOC的周长少10cm,
∴BC+OB+OC-(AB+OB+OA)=10cm,
∴BC-AB=10cm,
∵平行四边形ABCD的周长是40cm,
∴AB+BC+CD+AD=40cm,
∴BC+AB=20cm,
∴AB=5cm.
故选A.
本题考查平行四边形的性质,比较简单,关键是利用平行四边形的性质解题:平行四边形的对角线互相平分.
2、B
【解析】
分析:
根据函数图象中所提供的信息进行分析判断即可.
详解:
(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;
(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;
(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;
(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.
综上所述,4个结论中正确的有2个.
故选B.
点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.
3、C
【解析】
过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
【详解】
延长EP、FP分别交AB、BC于G、H,
则由PD∥AB,PE∥BC,PF∥AC,可得,
四边形PGBD,EPHC是平行四边形,
∴PG=BD,PE=HC,
又△ABC是等边三角形,
又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
∴PF=PG=BD,PD=DH,
又△ABC的周长为12,
∴PD+PE+PF=DH+HC+BD=BC=×12=4,
故选C.
本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
4、A
【解析】
先把-1移到右边,然后两边都加4,再把左边写成完全平方的形式即可.
【详解】
∵,
∴,
∴,
∴.
故选A.
本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.
5、D
【解析】
0.000 071 5= ,故选D.
6、A
【解析】
分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.
详解:A、12+()2=3≠22,不符合勾股定理的逆定理,不是直角三角形,故此选项正确;
B、72+242=252,符合勾股定理的逆定理,是直角三角形,故此选项错误;
C、62+82=102,符合勾股定理的逆定理,是直角三角形,故此选项错误;
D、52+122=132,符合勾股定理的逆定理,是直角三角形,故此选项错误;
故选A.
点睛:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
7、A
【解析】
设每人每小时的绿化面积为x平方米,等量关系为:6名工人比8名工人完成任务多用3小时,据此列方程即可.
【详解】
解:设每人每小时的绿化面积为x平方米,
由题意得,
故选:A.
本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
8、B
【解析】
根据中心对称图形的概念求解.
【详解】
解:A、不是中心对称图形,故此选项错误;
B、是中心对称图形,故此选项正确;
C、不是中心对称图形,故此选项错误;
D、不是中心对称图形,故此选项错误.
故选B.
本题考查中心对称图形.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、85.4 分
【解析】
根据加权平均数的概念,注意相对应的权比即可求解.
【详解】
8030%+9050%+8220%=85.4
本题考查了加权平均数的求法,属于简单题,熟悉加权平均数的概念是解题关键.
10、第三象限
【解析】分析:
根据直线y=kx+b在平面直角坐标系中所经过象限与k、b值的关系进行分析解答即可.
详解:
∵直线y=kx+b经过第一、三、四象限,
∴k>0,b
相关试卷
这是一份2025届江苏省苏州工业园区数学九上开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年苏州工业园区数学九年级第一学期开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年江苏省苏州苏州工业园区四校联考数学九年级第一学期开学考试试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。