2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】
展开
这是一份2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是( )
A.20B.30C.0.4D.0.6
2、(4分)我校是教育部的全国青少年校园足球“满天星”训练基地,旨在“踢出快乐,拼出精彩”,如图,校园足球图片正中的黑色正五边形的内角和是( )
A.B.C.D.
3、(4分)下列从左到右的变形,是因式分解的是( )
A.(x﹣y)(x+ y)= x2﹣y2B.2x2+4xy = 2x(x+2y)
C.x2+2x+3 = x(x+2)+3D.(m﹣2)2 = m2﹣4m+4
4、(4分)如图,平行四边形中,平分,交于点,且,延长与的延长线交于点,连接,.下列结论:①;②是等边三角形;③;④;⑤中正确的有( )
A.1个B.2个C.3个D.4个
5、(4分)实数的值在( )
A.0和1之间B.1和1.5之间
C.1.5和2之间D.2和4之间
6、(4分)如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是( )
A.B.C.D.
7、(4分)用配方法解一元二次方程时,下列变形正确的是( ).
A.B.C.D.
8、(4分)一元二次方程的两根是( )
A.0,1B.0,2C.1,2D.1,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在中,若,则_____________
10、(4分)下列命题:
①矩形的对角线互相平分且相等;
②对角线相等的四边形是矩形;
③菱形的每一条对角线平分一组对角;
④一条对角线平分一组对角的平行四边形是菱形.
其中正确的命题为________(注:把你认为正确的命题序号都填上)
11、(4分)分解因式:x2-2x+1=__________.
12、(4分)如图,∠AOP=∠BOP,PC∥OA,PD⊥OA,若∠AOB=45°,PC=6,则PD的长为_____.
13、(4分)已知关于的方程的一个根为,则实数的值为( )
A.B.C.D.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣1,﹣3),C(3,n),交y轴于点B,交x轴于点D.
(1)求反比例函数y=和一次函数y=kx+b的表达式;
(2)连接OA,OC.求△AOC的面积.
15、(8分)如图,反比例函数y=(k>0)的图象与一次函数y=x的图象交于A、B两点(点A在第一象限).
(1)当点A的横坐标为4时.
①求k的值;
②根据反比例函数的图象,直接写出当-4<x<1(x≠0)时,y的取值范围;
(2)点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,求k的值.
16、(8分)我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
17、(10分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.
18、(10分)如图,在菱形ABCD中,∠ABC与∠BAD的度数比为1:2,周长是1.
求:(1)两条对角线的长度;(2)菱形的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)某鞋店销售一款新式女鞋,试销期间对该款不同型号的女鞋销售量统计如下表:
该店经理如果想要了解哪种女鞋的销售量最大,那么他应关注的统计量是_____.
20、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
21、(4分)如图,在平面直角坐标系中,已知直线分别交反比例函数和在第一象限的图象于点过点作轴于点交的图象于点连结.若是等腰三角形,则的值是________________.
22、(4分)两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积之和为130cm1,那么较小的多边形的面积是_____cm1.
23、(4分)命题“两直线平行,同位角相等”的逆命题是 .
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、又作平行四边形CFHD、CGKE.
求证:H,C,K三点共线.
25、(10分)已知:如图1,在平面直角坐标系中,直线:与坐标轴分别相交于点A、B与:相交于点C.
(1)求点C的坐标;
(2)若平行于y轴的直线交于直线于点E,交直线于点D,交x轴于点M,且,求a的值;
26、(12分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.△ABC的三个顶点都在格点上.
⑴ 在线段AC上找一点P(不能借助圆规),使得,画出点P的位置,并说明理由.
⑵ 求出⑴中线段PA的长度.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.
【详解】
一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.
此题主要考查对频数定义的理解,熟练掌握即可得解.
2、C
【解析】
根据多边形内角和公式(n-2)×180°即可求出结果.
【详解】
解:黑色正五边形的内角和为:(5-2)×180°=540°,
故选:C.
本题考查了多边形的内角和公式,解题关键是牢记多边形的内角和公式.
3、B
【解析】
根据因式分解的概念逐一进行分析即可.
【详解】
A. (x﹣y)(x+ y)= x2﹣y2,从左到右是整式的乘法,故不符合题意;
B. 2x2+4xy = 2x(x+2y),符合因式分解的概念,故符合题意;
C. x2+2x+3 = x(x+2)+3,不符合因式分解的概念,故不符合题意;
D. (m﹣2)2 = m2﹣4m+4,从左到右是整式的乘法,故不符合题意,
故选B.
本题考查了因式分解的概念,熟练掌握因式分解是指将一个多项式写成几个整式积的形式是解题的关键.
4、C
【解析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF,⑤正确.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
在△ABC和△EAD中,
,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确;
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故选C.
本题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
5、B
【解析】
根据,,即可判断.
【详解】
解:∵,,,
∴实数的值在1和1.5之间,
故选:B.
此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.
6、B
【解析】
如图,过点E作EM⊥BC于点M,EN⊥AB于点N,
∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.
由旋转的性质可得∠NEK=∠MEL,
在Rt△ENK和Rt△EML中,
∠NEK=∠MEL,EN=EM,∠ENK=∠EML,
∴△ENK≌△ENL(ASA).
∴阴影部分的面积始终等于正方形面积的,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.
7、D
【解析】
根据配方法的原理,凑成完全平方式即可.
【详解】
解:
,
,
,
故选:D.
本题主要考查配方法的掌握,关键在于一次项的系数等于2倍的二次项系数和常数项的乘积.
8、A
【解析】
利用因式分解法解答即可得到方程的根.
【详解】
解:,
,
解得,.
故选:A.
本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、;
【解析】
根据在直角三角形中,角所对的边是斜边的一半,即可的BC的长.
【详解】
根据题意中,若
所以可得BC=
故答案为1
本题主要考查在直角三角形中,角所对的边是斜边的一半,这是一个重要的直角三角形的性质,应当熟练掌握.
10、①③④
【解析】
根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.
【详解】
①矩形的对角线互相平分且相等,故正确;
②对角线相等的平行四边形是矩形,故错误;
③菱形的每一条对角线平分一组对角,这是菱形的一条重要性质,故正确;
④一条对角线平分一组对角的平行四边形是菱形,故正确.
故答案为①③④.
考查了正方形、平行四边形、菱形和矩形的判定方法.解答此题的关键是熟练掌握运用这些判定.
11、(x-1)1.
【解析】
由完全平方公式可得:
故答案为.
错因分析 容易题.失分原因是:①因式分解的方法掌握不熟练;②因式分解不彻底.
12、3
【解析】
过P作PE⊥OB,根据角平分线的定义和平行线的性质易证得△PCE是等腰直角三角形,得出PE=3,根据角平分线的性质即可证得PD=PE=3.
【详解】
解:过P作PE⊥OB,
∵∠AOP=∠BOP,∠AOB=45°,
∴∠AOP=∠BOP=22.5°,
∵PC∥OA,
∴∠OPC=∠AOP=22.5°,
∴∠PCE=45°,
∴△PCE是等腰直角三角形,
,
∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,
∴PD=PE=.
本题考查了角平分线的性质,平行线的性质,等腰直角三角形的判定和性质,求得∠PCE=45°是解题的关键.
13、A
【解析】
根据一元二次方程的根的定义,将根代入进行求解.
【详解】
∵x=−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k−6=0,
解此方程得到k=1.
故选:A.
考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.
三、解答题(本大题共5个小题,共48分)
14、(1)y=,y=x﹣2;(2)1.
【解析】
(1)先把A点坐标代入y=中求出m得到反比例函数的解析式是y=,再确定C的坐标,然后利用待定系数法求一次函数解析式;
(2)先确定D(2,0),然后根据三角形面积公式,利用S△AOC=S△OCD+S△AOD进行计算.
【详解】
解:(1)把A(﹣1,﹣3)代入y=得m=﹣1×(﹣3)=3,
则反比例函数的解析式是y=,
当x=3代入y==1,则C的坐标是(3,1);
把A(﹣1,﹣3),C(3,1)代入y=kx+b得,解得,
所以一次函数的解析式是:y=x﹣2;
(2)x=0,x﹣2=0,解得x=2,则D(2,0),
所以S△AOC=S△OCD+S△AOD=×2×(1+3)=1.
本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.
15、(1)①12,②y<-3或y>12;(2)1
【解析】
(1)①根据点A的横坐标是4,可以求得点A的纵坐标,从而可以求得k的值;
②根据反比例函数的性质,可以写出y的取值范围;
(2)根据点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,灵活变化,可以求得点A的坐标,从而可以求得k的值.
【详解】
解:(1)①将x=4代入y=x得,y=3,
∴点A(4,3),
∵反比例函数y=(k>0)的图象与一次函数y=x的图象交于A点,
∴3=,
∴k=12;
②∵x=-4时,y==-3,x=1时,y==12,
∴由反比例函数的性质可知,当-4<x<1(x≠0)时,y的取值范围是y<-3或y>12;
(2)设点A为(a,),
则OA==,
∵点C为y轴正半轴上一点,∠ACB=90°,且△ACB的面积为10,
∴OA=OB=OC=,
∴S△ACB==10,
解得,a=,
∴点A为(2,),
∴=,
解得,k=1,
即k的值是1.
本题考查一次函数与反比例函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.
16、(1)详见解析;(2)144°;(3)众数为1.5小时、中位数为1.5小时.
【解析】
试题分析:(1)根据学生劳动“1小时”的人数除以占的百分比,求出总人数,
(2)进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果;
(3)根据统计图中的数据确定出学生劳动时间的众数与中位数即可.
解:(1)根据题意得:30÷30%=100(人),
∴学生劳动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),
补全统计图,如图所示:
(2)根据题意得:40%×360°=144°,
则扇形图中的“1.5小时”部分圆心角是144°;
(3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时.
17、证明见解析
【解析】
首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.
【详解】
解:∵DE=BF,
∴DE+EF=BF+EF,即DF=BE,
在Rt△ADF和Rt△CBE中,,
∴Rt△ADF≌Rt△CBE(HL),
∴AF=CE.
本题考查了全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.
18、(1)AC=8,BD=;(2).
【解析】
(1)首先证明△ABC是等边三角形,解直角三角形OAB即可解决问题;
(2)菱形的面积等于对角线乘积的一半;
【详解】
解:(1)菱形ABCD的周长为1,
∴菱形的边长为1÷4=8
∵∠ABC:∠BAD=1:2,∠ABC+∠BAD=180°
∠ABC=60°,∠BCD=120°
△ABC是等边三角形
∴AC=AB=8
∵菱形ABCD对角线AC、BD相交于点O
∴AC⊥BD,∠ABO=∠ABC=30°
∴OA=AB=4
∴BO= .
∴BD=
(2)
本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是证明△ABC是等边三角形,属于中考常考题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、众数
【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然想要了解哪种女鞋的销售量最大,那么应该关注那种尺码销的最多,故值得关注的是众数.
【详解】
由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.
故答案为众数.
此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.
20、1
【解析】
分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.
详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.
故答案为:1.
点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
21、或
【解析】
根据题意,先求出点A、B的坐标,然后得到点C的坐标,由等腰三角形的性质,进行分类讨论,即可求出k的值.
【详解】
解:根据题意,有则,
解得:
同理可得:
为等腰三角形,
当时,
即
整理得
解得或(舍去);
当时,
即
整理得,
解得或(舍).
故答案为:或.
本题利用反比例函数与一次函数交点特征将点坐标用含 的式子表示出来,对等腰三角形的腰进行分类讨论.属于常考题型
22、2
【解析】
试题分析:利用相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方可得.
解:两个相似多边形的一组对应边分别为3cm和4.5cm,
则相似比是3:4.5=1:3,
面积的比等于相似比的平方,即面积的比是4:9,
因而可以设较小的多边形的面积是4x(cm1),
则较大的是9x(cm1),
根据面积的和是130(cm1),
得到4x+9x=130,
解得:x=10,
则较小的多边形的面积是2cm1.
故答案为2.
23、同位角相等,两直线平行
【解析】
逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行
本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用
二、解答题(本大题共3个小题,共30分)
24、证明见解析.
【解析】
如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,想办法证明四边形MNQJ是平行四边形即可解决问题;
【详解】
证明:如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,DG.
四边形AECD是平行四边形,
,同法可证:,
,,
同法可证:,,
,,
四边形MNQJ是平行四边形,
与MQ互相平分,
,,,
、C、Q共线,
,C,K三点共线.
本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.
25、 (1) C坐标为;(2) 2或1.
【解析】
(1)联立两直线解析式得到方程组,求出方程组的解即可确定出的坐标;
(2)将代入两直线方程求出对应的值,确定出与的纵坐标,即与的长,由求出的长,根据,求出的长,将代入两直线方程,求出与对应的横坐标,相减的绝对值等于的长列出关于的方程,求出方程的解即可求出的值.
【详解】
解:(1)联立两直线解析式得:,
解得:,
则点C坐标为;
(2)由题意:
解得或1.
此题属于一次函数综合题,主要考查了两直线的交点问题,以及一次函数图象上点的坐标特征.解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
26、 (1)详见解析;(2)线段PA的长度为.
【解析】
试题分析:
(1)利用方格纸可作出BC的垂直平分线交AC于点P,点P为所求的点,由线段垂直平分线的性质和勾股定理即可证明此时:PC2-PA2=AB2;
(2)由图中信息可得AB=4,AC=6,设PA=,则PC=PB=6-,在Rt△PAB中,由勾股定理建立方程解出即可.
试题解析:
⑴ 如图,利用方格纸作BC的垂直平分线,分别交AC、BC于点P、Q,则PC=PB.
∵在△APB中,∠A=90°,
∴,即: ,
∴ .
⑵ 由图可得:AC=6,AB=4,设PA=x,则PB=PC=6-x
∵在△PAB中,∠A=90°,
∴ ,解得:,即PA=.
答:线段PA的长度为.
题号
一
二
三
四
五
总分
得分
尺码/厘米
22
22.5
23
23.5
24
24.5
25
销售量/双
1
2
3
11
8
6
4
相关试卷
这是一份2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省简阳中学数学九上开学学业质量监测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省宜宾市九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。