年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】

    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】第1页
    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】第2页
    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】

    展开

    这是一份2025届四川省宜宾市翠屏区数学九上开学监测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知锐角三角形的边长是2,3,x,那么第三边x的取值范围是( )
    A.1<x<B.C.D.
    2、(4分)已知一次函数y=(1﹣a)x+1,如果y随自变量x的增大而增大,那么a的取值范围为( )
    A.a<1B.a>1C.a<﹣1D.a>﹣1.
    3、(4分)要使二次根式有意义,字母的取值范围是( )
    A.x≥B.x≤C.x>D.x<
    4、(4分)如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)
    A.23.1B.21.9C.27.5D.30
    5、(4分)已知一次函数y=kx﹣k(k≠0),y随x的增大而增大,则该函数的图象大致是()
    A.B.
    C.D.
    6、(4分)下列命题是真命题的是( )
    A.四边都是相等的四边形是矩形B.菱形的对角线相等
    C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形
    7、(4分)如果,那么下列各式正确的是( )
    A.a+5<b+5B.5a<5bC.a﹣5<b﹣5D.
    8、(4分)若分式方程+3=有增根,则a的值是( )
    A.﹣1B.0C.1D.2
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在□ABCD中,一角的平分线把一条边分成3 cm和4 cm两部分,则□ABCD的周长为__________.
    10、(4分)任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有_____.
    11、(4分)当x______时,分式有意义.
    12、(4分)若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    13、(4分)比较大小:_____1.(填“>”、“=”或“<”)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).
    (1)补全条形统计图;
    (2)求出扇形统计图中册数为4的扇形的圆心角的度数;
    (3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了 .
    15、(8分)已知,梯形ABCD中,AB∥CD,BC⊥AB,AB=AD,连接BD(如图a),点P沿梯形的边,从点A→B→C→D→A移动,设点P移动的距离为x,BP=y.
    (1)求证:∠A=2∠CBD;
    (2)当点P从点A移动到点C时,y与x的函数关系如图(b)中的折线MNQ所示,试求CD的长.
    (3)在(2)的情况下,点P从A→B→C→D→A移动的过程中,△BDP是否可能为等腰三角形?若能,请求出所有能使△BDP为等腰三角形的x的取值;若不能,请说明理由.
    16、(8分)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
    (1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件.
    (2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
    17、(10分)据某市交通运管部门月份的最新数据,目前该市市面上的共享单车数量已达万辆,共享单车也逐渐成为高校学生喜爱的“绿色出行”方式之一.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.
    (1)求这天部分出行学生使用共享单车次数的平均数,中位数和众数.
    (2)若该校这天有名学生出行,估计使用共享单车次数在次以上(含次)的学生数.
    18、(10分)如图,已知四边形ABCD是平行四边形,小慧同学利用直尺和规进行了如下操作:①连接AC,分别以点A、C为圆心,以大于AC的长为半径画弧,两弧相交于点P、Q;②作直线PQ,分别交BC、AC、AD于点E、O、F,连接AE、CF.根据操作结果,解答下列问题:
    (1)线段AF与CF的数量关系是 .
    (2)若∠BAD=120°,AE平分∠BAD,AB=8,求四边形AECF的面积.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)不等式组的所有整数解的积是___________.
    20、(4分)函数中自变量x的取值范围是 .
    21、(4分)若关于的一元二次方程有实数根,则的取值范围为______.
    22、(4分)若,则的值是________
    23、(4分)不等式2x≥-4的解集是 .
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知,在一条直线上,.
    求证:(1);
    (2)四边形是平行四边形.
    25、(10分)计算:;.
    海伦公式是利用三角形三条边长求三角形面积的公式,用符号表示为:其中a,b,c为三角形的三边长,,S为三角形的面积利用海伦公式求,,时的三角形面积S.
    26、(12分)如图,已知一次函数y=x+b的图象与反比例函数y= (x0,函数图像递增,kb+5,故A选项错误,
    5a>5b,故B选项错误,
    a-5>b-5,故C选项错误,
    ,故D选项正确,
    故选D.
    本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键.
    8、B
    【解析】
    根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a值.
    【详解】
    解:∵分式方程+3=有增根,
    ∴x=2是方程1+3(x-2)=a+1的根,
    ∴a=1.
    故选:B.
    本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2cm或22cm
    【解析】
    如图,设∠A的平分线交BC于E点,
    ∵AD∥BC,
    ∴∠BEA=∠DAE,
    又∵∠BAE=∠DAE,
    ∴∠BEA=∠BAE
    ∴AB=BE.
    ∴BC=3+4=1.
    ①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;
    ②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.
    所以□ABCD的周长为22cm或2cm.
    故答案为:22cm或2cm.
    点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.
    10、2
    【解析】
    把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.
    【详解】
    ∵2=1×2,∴F(2)=,故(1)是正确的;
    ∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;
    ∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;
    ∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的,∴正确的有(1),(4).
    故答案为2.
    本题考查了题目信息获取能力,解决本题的关键是理解答此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).
    11、≠
    【解析】
    试题分析:分式有意义的条件:分式的分母不为0时,分式才有意义.
    由题意得,.
    考点:分式有意义的条件
    点评:本题属于基础应用题,只需学生熟练掌握分式有意义的条件,即可完成.
    12、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    13、>.
    【解析】
    【分析】先求出1=,再比较即可.
    【详解】∵12=9<10,
    ∴>1,
    故答案为:>.
    【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析(2)75°(3)3人
    【解析】
    (1)用读书为6册的人数除以它所占的百分比得到调查的总人数;再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,即可解答
    (2)用4册的人数除以总人数乘以360°即可解答
    (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数.
    【详解】
    (1)抽查的学生总数为6÷25%=24(人),
    读书为5册的学生数为24-5-6-4=9(人)
    则条形统计图为:
    (2) =75°
    (3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.
    此题考查条形统计图,扇形统计图,中位数的定义,解题关键在于看懂图中数据
    15、(1)见解析;(2)1;(3)△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
    【解析】
    (1)根据等腰三角形两个底角相等可以进一步证明∠A=2∠CBD,
    (2) 根据题意描述,可以确定AB=5,AB+BC=8,再通过作DE⊥AB于来构造直角三角形可以求出CD长度.
    (3) 根据题目描述分情况来讨论哪个点为等腰三角形顶点,进而列方程进行求出P点位置情况.
    【详解】
    (1)证明:∵AB∥CD,BC⊥AB,AB=AD,
    ∴∠ABD=∠CDB,∠A+∠ADC=180°,∠ABD+∠CBD=90°,∠ABD=∠ADB,
    ∴∠A+2∠ABD=180°,2∠ABD+2∠CBD=180°,
    ∴∠A=2∠CBD;
    (2)解:由图(b)得:AB=5,AB+BC=8,
    ∴BC=3,作DE⊥AB于E,如图所示:
    则DE=BC=3,CD=BE,
    ∵AD=AB=5,
    ∴AE==4,
    ∴CD=BE=AB﹣AE=1;
    (3)解:可能;理由如下:
    分情况讨论:
    ①点P在AB边上时,
    当PD=PB时,P与A重合,x=0;
    当DP=DB时,BP=2BE=2,
    ∴AP=3,
    ∴x=3;
    当BP=BD==时,AP=5﹣,
    即x=5﹣;
    ②点P在BC上时,存在PD=PB,
    此时,x=5+=;
    ③点P在AD上时,
    当BP=BD=时,x=5+3+1+2=10;
    当DP=DB=时,x=5+3+1+=9+;
    综上所述:△BDP可能为等腰三角形,能使△BDP为等腰三角形的x的取值为:0或3或5﹣或或10或9+.
    本题主要考察学生对等腰三角形的性质、数形结合能力、还有分类讨论问题的能力,掌握数性结合运用是解决此题的关键.
    16、(1)10;2;(2)y=60x﹣120(4≤x≤9);(3)1.
    【解析】
    试题分析:(1)根据工作效率=工作总量÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加工的件数+乙车间加工的件数,即可求出这批服装的总件数;
    (2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小时加工服装件数,根据工作时间=工作总量÷工作效率结合工作结束时间,即可求出乙车间修好设备时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
    (3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加令其等于1000,求出x值,此题得解.
    试题解析:解:(1)甲车间每小时加工服装件数为720÷9=10(件),这批服装的总件数为720+420=2(件).
    故答案为10;2.
    (2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时),∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为y=120+60(x﹣4)=60x﹣120(4≤x≤9).
    (3)甲车间加工服装数量y与x之间的函数关系式为y=10x,当10x+60x﹣120=1000时,x=1.
    答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为1小时.
    点睛:本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系,找出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)根据数量关系,找出甲车间加工服装数量y与x之间的函数关系式.
    17、(1)中位数是次,众数是次;(2)人.
    【解析】
    (1)根据平均数、中位数和众数的定义求解可得;
    (2)用总人数乘以样本中使用共享单车次数在2次以上(含2次)的学生所占比例即可得.
    【详解】
    (1)
    (次)
    次数从小到大排列后,中间两个数是与
    中位数是次
    共享单车的使用次数中,出现最多的是次
    众数是次
    (2)
    即该校这天使用共享单车次数在次以上(含 次)的学生约有人.
    本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.
    18、(1)FA=FC;(2)
    【解析】
    (1)根据基本作图和线段垂直平分线的性质进行判断;
    (2))由AE平分∠BAD得到∠BAE=∠DAE=∠BAD=60°,利用平行四边形的性质得AD∥BC,则∠AEB=∠DAE=60°,所以△ABE为等边三角形,则AE=AB=8,∠B=60°,于是可计算出AC=AB=8,再证明△AEF为等边三角形得到EF=8,然后根据三角形面积公式利用四边形AECF的面积=EF×AC进行计算.
    【详解】
    解:(1)由作法得EF垂直平分AC,
    所以FA=FC.
    故答案为FA=FC;
    (2)∵AE平分∠BAD,
    ∴∠BAE=∠DAE=∠BAD=60°,
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴∠AEB=∠DAE=60°,
    ∴△ABE为等边三角形,
    ∴AE=AB=8,∠B=60°,
    ∵EA=EC,
    ∴∠EAC=∠ECA=∠AEB=30°,
    ∴AC=AB=8,
    ∵∠CAD=60°-30°=30°,
    即OA平分∠EAF,
    ∴AF=AE=8,
    ∴△AEF为等边三角形,
    ∴EF=8,
    ∴四边形AECF的面积=.
    本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、1
    【解析】
    先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
    【详解】
    由1-2x<3,得:x>-1,
    由 ≤2,得:x≤3,
    所以不等式组的解集为:-1<x≤3,
    它的整数解为1、1、2、3,
    所有整数解的积是1.
    故答案为1.
    此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
    20、
    【解析】
    求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件.
    【详解】
    解:要使在实数范围内有意义,必须.
    21、
    【解析】
    根据一元二次方程的定义和根的判别式得到△=b2-4ac≥0,然后求出不等式的解即可.
    【详解】
    解: 有实数根
    ∴△=b2-4ac≥0即,解得:
    即的取值范围为:
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    22、.
    【解析】
    解:∵﹣=2,∴a﹣b=﹣2ab,∴原式====﹣.故答案为﹣.
    23、x≥-1
    【解析】
    分析:已知不等式左右两边同时除以1后,即可求出解集.
    解答:
    解:1x≥-4,
    两边同时除以1得:x≥-1.
    故答案为x≥-1.
    二、解答题(本大题共3个小题,共30分)
    24、(1)详见解析;(2)详见解析.
    【解析】
    (1)由题意由“HL”可判定Rt△ABC≌Rt△EDF
    (2)根据一组对边平行且相等的四边形是平行四边形,可证四边形BCDF是平行四边形.
    【详解】
    证明:(1)∵AF=EC
    ∴AC=EF
    又∵BC=DF,
    ∴Rt△ABC≌Rt△EDF
    (2)∵Rt△ABC≌Rt△EDF
    ∴BC=DF,∠ACB=∠DFE
    ∴∠BCF=∠DFC
    ∴BC∥DF,BC=DF
    ∴四边形BCDF是平行四边形
    本题考查了平行四边形的判定与性质,全等三角形的判定与性质,关键是灵活运用性质和判定解决问题.
    25、 (1) ①5; ②5;(2) ,3.
    【解析】
    (1)根据二次根式的运算法则进行计算,适当运用乘法公式;(2)把已知值代入公式,再进行化简.
    【详解】
    解:
    ,


    本题考核知识点:二次根式运算. 解题关键点:掌握二次根式运算法则.
    26、(1)k=−2,y=x+,;(2)(1,2);(3)(0,)
    【解析】
    (1)把A(-1,2)代入两个解析式即可得到结论;
    (2)根据关于y轴对称的点的特点即可得到结论;
    (3)作点A关于y轴对称A′,连接AA′交y轴于C,则△ABC的周长最小,解方程组得到B(-4, ),得到A′B的解析式为y=,即可得到结论.
    【详解】
    (1)∵一次函数y=x+b的图象与反比例函数y= (x

    相关试卷

    2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】:

    这是一份2025届四川省宜宾市高县九上数学开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年四川省宜宾市九上数学开学检测模拟试题【含答案】:

    这是一份2024年四川省宜宾市九上数学开学检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】:

    这是一份2024-2025学年四川省宜宾市翠屏区中学数学九上开学质量检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map