2025届四川省泸州市江阳区数学九上开学经典模拟试题【含答案】
展开
这是一份2025届四川省泸州市江阳区数学九上开学经典模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各组数中,不是勾股数的为( )
A.3,4,5B.6,8,10C.5,12,13D.5,7,10
2、(4分)如图,正方形ABCD的边长为3,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为( )
A.20B.24C.12D.12
3、(4分)数据60,70,40,30这四个数的平均数是( )
A.40B.50C.60D.70
4、(4分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )
A.30°B.45°
C.90°D.135°
5、(4分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AB∥CD,添加下列条件不能使四边形ABCD成为平行四边形的是( )
A.AB=CDB.OB=OD
C.∠BCD+∠ADC=180°D.AD=BC
6、(4分)无论x取什么值,下面的分式中总有意义的是( )
A.B.C.D.
7、(4分)一个多边形的内角和等于1260°,则从此多边形一个顶点引出的对角线有( )
A.4条 B.5条 C.6条 D.7条
8、(4分)在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )
A.众数是90B.中位数是90C.平均数是90D.极差是15
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在梯形ABCD中,AD∥BC,AD=1,BC=4,AC=3,BD=4,则梯形ABCD的面积为______.
10、(4分)如图 ,矩形 ABCD 中,对角线 AC,BD 相交于点 O,若再补充一个条件就能使矩形 ABCD 成为正方形,则这个条件是 (只需填一个条件即可).
11、(4分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是_____.
12、(4分)若,则=______
13、(4分)将直线向上平移一个单位长度得到的一次函数的解析式为_______________.
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:,其中x=1
15、(8分)年“双十—”来临之际,某网点以每件元的价格购进件衬衫以每件元的价格迅速售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的倍,该批衬衫仍以每件元销售,十二月十二日下午六点,商店对剩余的件衬衫以每件的价格一次性清仓销售,商店出售这两批衬衫共盈利元,设第二批衬衫进价的增长率为.
(1)第二批衬衫进价为____________元,购进的数量为_____________件.(都用含的代数式表示)
(2)求的值.
16、(8分)先化简,再求值:,其中x是的整数部分.
17、(10分)已知a,b分别是6的整数部分和小数部分.
(1)求a,b的值;
(2)求3ab2的值.
18、(10分)如图,在△ABC中,∠ABC=90°,将△ABC绕点C顺时针旋转得到△DEC,连接AD,BE,延长BE交AD于点F.
(1)求证:∠DEF=∠ABF;
(2)求证:F为AD的中点;
(3)若AB=8,AC=10,且EC⊥BC,求EF的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.
20、(4分)已知平行四边形ABCD中,,,AE为BC边上的高,且,则平行四边形ABCD的面积为________.
21、(4分)已知不等式组的解集为,则的值是________.
22、(4分)如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.
23、(4分)菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在中,点、分别是、的中点,平分,交于点,交于点.
(1)求证:四边形是菱形;
(2)若,,求四边形的周长.
25、(10分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
26、(12分)计算.
(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
满足的三个正整数,称为勾股数,由此判断即可.
【详解】
解:、,此选项是勾股数;
、,此选项是勾股数;
、,此选项是勾股数;
、,此选项不是勾股数.
故选:.
此题主要考查了勾股数,关键是掌握勾股数的定义.
2、D
【解析】
根据正方形的性质,可知其对角线互相平分且垂直;由正方形的边长,可求得其对角线长;再由已知AE=CF=3,可得OE=OF,从而四边形为菱形;由勾股定理求得该菱形的一条边,再乘以4即可求得四边形BEDF的周长.
【详解】
∵四边形ABCD为正方形
∴AC⊥BD
∵正方形ABCD的边长为3,
∴AC=BD==6
∴OA=OB=OC=OD=3
∵AE=CF=3
∴OE=OF=6
∴四边形BEDF为菱形
∴BE=
则四边形BEDF的周长为4×3.
故选D.
本题考查了正方形的性质、对角线互相垂直平分的四边形是菱形及勾股定理的应用,具有一定的综合性.
3、B
【解析】
用四个数的和除以4即可.
【详解】
(60+70+40+30)÷4=200÷4=50.
故选B.
本题重点考查了算术平均数的计算,希望同学们要牢记公式,并能够灵活运用.
数据x1、x2、……、xn的算术平均数:=(x1+x2+……+xn).
4、C
【解析】
根据勾股定理求解.
【详解】
设小方格的边长为1,得,
OC=
,AO=
,AC=4,
∵OC2+AO2==16,
AC2=42=16,
∴△AOC是直角三角形,
∴∠AOC=90°.
故选C.
考点:勾股定理逆定理.
5、D
【解析】
已知AB∥CD,可根据有一组边平行且相等的四边形是平行四边形来判定,也可根据两组对边分别平行的四边形是平行四边形来判定.
【详解】
∵在四边形ABCD中,AB∥CD,
∴可添加的条件是:AB=CD,
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形),故选项A不符合题意;
∵AB∥CD,
∴∠ABD=∠CDB,
在△AOB和△COD中,
∴△AOB≌△COD(ASA),
∴AB=CD,
∴四边形ABCD为平行四边形,故选项B不符合题意;
∵∠BCD+∠ADC=180°,
∴AD∥BC,
∵AB∥CD,
∴四边形ABCD是平行四边形,故选项C不符合题意;
∵AB∥CD,AD=BC无法得出四边形ABCD是平行四边形,故选项D符合题意.
故选:D.
本题考查了平行四边形的定义、平行四边形的判定定理;熟练掌握平行四边形的判定方法是解决问题的关键.
6、B
【解析】
根据分母等于0,分式无意义;分母不等于0,分式有意义对各选项举反例判断即可
【详解】
解:A.当x=0时,分式无意义,故本选项错误;
B. 对任意实数,x2+1≠0,分式有意义,故本选项正确;
C.当x=0时,分母都等于0,分式无意义,故本选项错误;
D. 当x=-1时,分式无意义,故本选项错误.
故选B
本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
7、C
【解析】
这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
根据题意,得
(n-2)•180=1260,
解得n=9,
∴从此多边形一个顶点引出的对角线有9-3=6条,
故选C.
本题考查了多边形的内角和定理:n边形的内角和为(n-2)×180°.
8、C
【解析】
由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:
【详解】
解:∵90出现了5次,出现的次数最多,∴众数是90;
∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;
∵平均数是(80×1+85×2+90×5+95×2)÷10=89;
极差是:95﹣80=1.
∴错误的是C.故选C.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
过点D作DE∥AC,交BC的延长线于点E,得四边形ACED是平行四边形,则DE=AC=3,CE=AD=1.根据勾股定理的逆定理即可证明三角形BDE是直角三角形.根据梯形的面积即为直角三角形BDE的面积进行计算.
【详解】
解:过点D作DE∥AC,交BC的延长线于点E,
则四边形ACED是平行四边形,
∴DE=AC=3,CE=AD=1,
在三角形BDE中,∵BD=4,DE=3,BE=5,
∴根据勾股定理的逆定理,得三角形BDE是直角三角形,
∵四边形ACED是平行四边形
∴AD=CE,
∴AD+BC=BE,
∵梯形ABCD与三角形BDE的高相等,
∴梯形的面积即是三角形BDE的面积,即3×4÷2=2,
故答案是:2.
本题考查了梯形的性质,梯形中常见的辅助线之一是平移对角线.
10、AB=BC(答案不唯一).
【解析】
根据正方形的判定添加条件即可.
【详解】
解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).
本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一道开放型的题目,答案不唯一,也可以添加AC⊥BD.
11、18
【解析】
分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.
详解:∵在菱形ABCD中,AC=8,BD=6,
∴AB=BC,∠AOB=90°,AO=4,BO=3,
∴BC=AB=,
∴△ABC的周长=AB+BC+AC=5+5+8=18.
故答案为18
点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.
12、
【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.
【详解】
设=k,
x=2k,y=4k,z=5k
=.
故答案是:.
考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.
13、
【解析】
解:由平移的规律知,得到的一次函数的解析式为.
三、解答题(本大题共5个小题,共48分)
14、
【解析】
分析:先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分,然后把x=1代入计算即可.
详解:原式=
=
= ,
当x=1时,原式= ;
点睛:本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序是解答本题的关键.
15、(1),;(2)
【解析】
(1)根据题意列出对应的代数式即可.
(2)根据题意列出方程,求解即可.
【详解】
(1)由题意得,
第二批衬衫进价为元,
购进的数量为件.
故答案为:;.
(2)第一批利润:(元),
第二批利润:(元),
,
整理得
,(舍)
增长率为
本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.
16、,
【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.
【详解】
解:原式=
∵x是的整数部分,∴x=2.
当x=2时, .
本题考查分式的化简求值,熟练掌握运算法则是解题关键.
17、(1)a=3, b=3-; (2)6-1.
【解析】
(1)先求出范围,再两边都乘以-1,再两边都加上6,即可求出a、b;
(2)把a、b的值代入求出即可.
【详解】
(1)∵2<<3,
∴-3<-<-2,
∴3<6-<4,
∴a=3,b=6--3=3-;
(2)3a-b2=3×3-(3-)2=9-9+6-1=6-1.
本题考查了估算无理数的大小和有理数的混合运算的应用,主要考查学生的计算能力.
18、(1)见解析;(2)见解析;(3)
【解析】
(1)根据等角的余角相等证明即可;
(2)如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,首先证明△ANB≌△DME,可得AN=DM,然后证明△AFN≌△DFM,求出AF=FD即可;(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M,想办法求出FM,EM即可.
【详解】
(1)证明: ∵CB=CE,
∴∠CBE=∠CEB,
∵∠ABC=∠CED=90°,
∴∠DEF+∠CEB=90°,∠ABF+∠CBE=90°,
∴∠DEF=∠ABF.
(2)证明:如图1中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
∵∠ABN=∠DEM,∠ANB=∠M=90°,AB=DE,
∴△ANB≌△DME(AAS),
∴AN=DM,
∵∠ANF=∠M=90°,∠AFN=∠DFM,AN=DM,
∴△AFN≌△DFM(AAS),
∴AF=FD,即F为AD的中点;
(3)如图2中,作AN⊥BF于N,DM⊥BF交BF的延长线于M.
在Rt△ABC中,∵∠ABC=90°,AC=10,AB=8,
∴BC=EC==6,
∵EC⊥BC,
∴∠BCE=∠ACD=90°,
∵AC=CD=10,
∴AD=10,
∴DF=AF=5,
∵∠MED=∠CEB=45°,
∴EM=MD=4,
在Rt△DFM中,FM==3,
∴EF=EM-FM=.
本题考查旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
试题分析:首先设点P的坐标为(x,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.
20、2或1
【解析】
分高AE在△ABC内外两种情形,分别求解即可.
【详解】
①如图,高AE在△ABC内时,在Rt△ABE中,BE==9,
在Rt△AEC中,CE==5,
∴BC=BE+EC=14,
∴S平行四边形ABCD=BC×AE=14×12=1.
②如图,高AE在△ABC外时,BC=BE-CE=9-5=4,
∴S平行四边形ABCD=BC×AE=12×4=2,
故答案为1或2.
本题考查平行四边形的性质.四边形的面积,解题的关键是学会用分类讨论的思想思考问题.
21、
【解析】
根据不等式的解集求出a,b的值,即可求解.
【详解】
解得
∵解集为
∴=1,3+2b=-1,
解得a=1,b=-2,
∴=2×(-3)=-6
此题主要考查不等式的解集,解题的关键是熟知不等式的性质及解集的定义.
22、x > 1;
【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.
【详解】
∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,
∴不等式ax>kx+b的解集为x>1,
故答案为x>1.
本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.
23、1
【解析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图,根据题意得AO=×8=4,BO=×6=3,
∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.
∴△AOB是直角三角形.
∴.
∴此菱形的周长为:5×4=1
故答案为:1.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)8.
【解析】
(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;
(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.
【详解】
证明:(1)∵点D、E分别是AB、AC的中点,
∴BC=2DE,DE∥BC,且FG∥AB,
∴四边形BDFG是平行四边形,
∵BF平分∠ABC,
∴∠DBF=∠GBF,
∵DE∥BC,
∴∠GBF=∠DFB,
∴∠DFB=∠DBF,
∴DF=DB,
∴四边形BDFG是菱形;
(2)∵四边形BDFG是菱形;
∴DF=BG=GF=BD
∵BC=2DE
∴BG+4=2(BG+1)
∴BG=2,
∴四边形BDFG的周长=4×2=8
本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的性质是本题的关键.
25、见解析(2)
【解析】
(1)根据三角形中位线定理和全等三角形的判定证明即可;
(2)利用正方形的性质和矩形的面积公式解答即可.
【详解】
(1)连接EF,∵点F,G,H分别是BC,BE,CE的中点,
∴FH∥BE,FH=BE,FH=BG,
∴∠CFH=∠CBG,
∵BF=CF,
∴△BGF≌△FHC,
(2)当四边形EGFH是正方形时,连接GH,可得:EF⊥GH且EF=GH,
∵在△BEC中,点G,H分别是BE,CE的中点,
∴ 且GH∥BC,
∴EF⊥BC,
∵AD∥BC,AB⊥BC,
∴AB=EF=GH=a,
∴矩形ABCD的面积=
此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.
26、(1)5;(2)
【解析】
(1)根据负整数指数幂的意义和分母有理化得到原式=4-2+3,然后合并同类二次根式即可
(2)先根据平方差公式进行计算,再根据完全平方公式进行计算合并同类项即可
【详解】
(1)解: 原式=4-2+3=5
(2)解: 原式=
=
=
此题考查平方差公式,完全平方公式,负整数指数幂,掌握运算法则是解题关键
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2025届四川省眉山县数学九上开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届四川省泸州市名校数学九年级第一学期开学经典模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年潍坊市数学九上开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。