2025届上海市西延安中学数学九上开学综合测试模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了解某班学生双休日户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是( )
A.B.
C.D.
2、(4分)对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限
B.函数的图象与x轴的交点坐标是(2,0)
C.函数的图象向下平移4个单位长度得y=﹣2x的图象
D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2
3、(4分)下列各式中属于最简二次根式的是( ).
A.B.C.D.
4、(4分)将一元二次方程配方后,原方程可化为( )
A.B.C.D.
5、(4分)多项式2m+4与多项式m2+4m+4的公因式是( )
A.m+2B.m﹣2C.m+4D.m﹣4
6、(4分)如图,在中,,若.则正方形与正方形的面积和为( )
A.25B.144C.150D.169
7、(4分)如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为( )
A.1B.C.-1D.+1
8、(4分)甲,乙,丙,丁四位跨栏运动员在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲,乙,丙,丁成绩的方差分别是0.11,0.03,0.05,0.02,则当天这四位运动员“110米跨栏”训练成绩最稳定的是( )
A.甲B.乙C.丙D.丁
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是 .
10、(4分)在某次射击训练中,教练员统计了甲、乙两位运动员10次射击成绩,两人的平均成绩都是8.8环,且方差分别是1.8环,1.3环,则射击成绩较稳定的运动员是______(填“甲”或“乙”).
11、(4分)将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为 .
12、(4分)若有意义,则x的取值范围为___.
13、(4分)一次函数y=(m+2)x+3-m,若y随x的增大而增大,函数图象与y轴的交点在x轴的上方,则m的取值范围是____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,⊙O为ABC的外接圆,D为OC与AB的交点,E为线段OC延长线上一点,且EACABC.
(1)求证:直线AE是⊙O的切线;
(2)若D为AB的中点,CD3,AB8.
①求⊙O的半径;②求ABC的内心I到点O的距离.
15、(8分)如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为24,求BC的长度.
16、(8分)如图,□ABCD中,在对角线BD上取E、F两点,使BE=DF,连AE,CF,过点E作EN⊥FC交FC于点N,过点F作FM⊥AE交AE于点M;
(1)求证:△ABE≌△CDF;
(2)判断四边形ENFM的形状,并说明理由.
17、(10分)随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.
(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;
(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?
18、(10分)已知方程组,当m为何值时,x>y?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
20、(4分)不等式2x-1>5的解集为 .
21、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
22、(4分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为________________.
23、(4分)在Rt△ABC中,∠C=90°,∠A=30°,BC=6,那么AB=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知直角梯形,,,过点作,垂足为点,,,点是边上的一动点,过作线段的垂直平分线,交于点,并交射线于点.
(1)如图1,当点与点重合时,求的长;
(2)设,,求与的函数关系式,并写出定义域;
(3)如图2,联结,当是等腰三角形时,求的长.
25、(10分)如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt△ABC的顶点分别是A(-1,3),B(-3,-1),C(-3,3).
(1)请在图1中作出△ABC关于点(-1,0)成中心对称△,并分别写出A,C对应点的坐标 ;
(2)设线段AB所在直线的函数表达式为,试写出不等式的解集是 ;
(3)点M和点N 分别是直线AB和y轴上的动点,若以,,M,N为顶点的四边形是平行四边形,求满足条件的M点坐标.
26、(12分)解方程:3x-1=x2
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
分析:根据中位数、平均数和众数的概念求解即可.
详解:∵共10人,
∴中位数为第5和第6人的平均数,
∴中位数=(3+3)÷3=5;
平均数=(1×2+2×2+3×4+6×2)÷10=3;
众数是一组数据中出现次数最多的数据,所以众数为3.
故选:A.
点睛:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
2、D
【解析】
根据一次函数的性质和一次函数图象上点的坐标特征以及一次函数的几何变换进行判断.
【详解】
解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;
B、函数的图象与x轴的交点坐标是(2,0),不符合题意;
C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;
D、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y2<y1,符合题意;
故选D.
本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.
3、B
【解析】
判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.
【详解】
A. =可化简,错误;
B. 是最简二次根式 ,正确;
C. =,可化简,错误;
D. =,可化简,错误.故选B.
本题考查了最简二次根式,解题的关键是掌握判断最简二次根式的两个条件:
(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;
(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.
4、C
【解析】
根据配方法对进行计算,即可解答本题.
【详解】
解:∵x2﹣4x+1=0,
∴(x﹣2)2﹣4+1=0,
∴(x﹣2)2=3,
故选:C.
本题考查解一元二次方程﹣配方法,解答本题的关键是明确解一元二次方程的方法.
5、A
【解析】
根据公因式定义,对每个多项式整理然后即可选出有公因式的项.
【详解】
2m+4=2(m+2),
m2+4m+4=(m+2)2,
∴多项式2m+4与多项式m2+4m+4的公因式是(m+2),
故选:A.
本题考查了公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.
6、D
【解析】
根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.
【详解】
在Rt△ABC中,AC2+BC2=AB2=169,
则正方形与正方形的面积和= AC2+BC2 =169,
故选D.
本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.
7、C
【解析】
【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出,结合BD=AB﹣AD即可求出的值.
【详解】∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
∴△ADE∽△ABC,
∴,
∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,
∴,
∴,
故选C.
【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.
8、D
【解析】
根据方差的定义,方差越小数据越稳定.
【详解】
∵0.02<0.03<0.05<0.11,
∴丁的成绩的方差最小,
∴当天这四位运动员“110米跨栏”的训练成绩最稳定的是丁。
故选:D.
此题考查方差,解题关键在于掌握其定义
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
试题分析:画树状图为:
共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以则两辆汽车都直行的概率为,故答案为.
考点:列表法与树状图法.
10、乙
【解析】
直接根据方差的意义求解.
【详解】
∵S甲2=1.8,S乙2=1.3,1.3<1.8,
∴射击成绩比较稳定的是乙,
故答案为:乙.
本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
11、
【解析】
因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.
解:∵VB∥ED,三个正方形的边长分别为2、3、5,
∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,
∴VB=1,
∵CF∥ED,
∴CF:DE=AC:AD,即CF:5=5:10
∴CF=2.5,
∵S梯形VBFC=(BV+CF)•BC=,
∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.
故答案为.
12、x≥﹣1.
【解析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x+1≥0且x+2≠0,解得x≥﹣1.
故答案为x≥﹣1.
本题考查了二次根式有意义的条件和分式有意义的条件,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
13、-2<m<1
【解析】
解:由已知得:,
解得:-2<m<1.
故答案为:-2<m<1.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)①⊙O的半径;②ABC的内心I到点O的距离为.
【解析】
(1)连接AO,证得EACABC=,,则EAO=EAC+CAO=,从而得证;
(2)①设⊙O的半径为r,则OD=r-3,在△AOD中,根据勾股定理即可得出②作出ABC的内心I,过I作AC,BC的垂线,垂足分别为F,G.设内心I到各边的距离为a,由面积法列出方程求解可得答案.
【详解】
(1)如图,连接AO
则EACABC=.
又∵AO=BO,
∴ACO=CAO=
∴EAO=EAC+CAO=AOC +=
∴EA⊥AO
∴直线AE是⊙O的切线;
(2)①设⊙O的半径为r,则OD=r-3,
∵D为AB的中点,
∴OC⊥AB,ADO=,AD=4
∴,即
解得
②如下图,
∵D为AB的中点,
∴
且CO是的平分线,则内心I在CO上,连接AI,BI,过I作AC,BC的垂线,垂足分别为F,G.
易知DI=FI=GI,设其长为a.由面积可知:
即
解得
∴
∴ABC的内心I到点O的距离为
本题考查了圆的切线的判定,垂径定理,圆周角定理等知识,是中考常见题.
15、BC=1.
【解析】
根据等腰三角形的性质可得AD⊥BC,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案
【详解】
解:∵AB=AC,AD平分∠BAC,
∴AD⊥BC,
∴∠ADC=90°,
∵点E为AC的中点,
∴DE=CE=AC=.
∵△CDE的周长为24,
∴CD=9,
∴BC=2CD=1.
此题考查等腰三角形的性质和直角三角形斜边上的中线,解题关键在于等腰三角形的性质得出AD⊥BC
16、(1)见解析;(2)四边形ENFM是矩形.见解析.
【解析】
(1)根据SAS即可证明;
(2)只要证明三个角是直角即可解决问题;
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD
∴∠ABD=∠CDB,又∵BE=DF,
∴△ABE≌△CDF(SAS).
(2)由(1)得,∴∠AEB=∠CFD,
∴∠AED=∠CFB,
∴AE∥CF
又∵EN⊥CF,∠AEN=∠ENF=90°,
又∵FM⊥AE,∠FME=90°,
∴四边形ENFM是矩形.
本题考查平行四边形的性质、全等三角形的判定和性质、矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
17、 (1) y=0.8x+50;(2)见解析.
【解析】
分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;
(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.
详解:(1)普通会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
当0<x≤300时,y=x+30;
当x>300时,y=0.9x;
VIP会员购买商品应付的金额y(元) 与所购商品x(元)之间的函数关系式为:
y=0.8x+50;
(2)当0.9x<0.8x+50时,
解得:x<500;
当0.9x=0.8x+50时,x=500;
当0.9x>0.8x+50时,x>500;
∴当购买的商品金额300<x<500时,按普通会员购买合算;
当购买的商品金额x>500时,按VIP会员购买合算;
当购买商品金额x=500时,两种方式购买一样合算.
点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,
分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.
18、.
【解析】
解含有参数m的二元一次方程组,得到关于m的x、y的值,再根据x>y的关系解不等式求出m的取值范围即可.
【详解】
解:,
②×2﹣①得:x=m﹣3③,
将③代入②得:y=﹣m+5,
∴得,
∵x>y,
∴m﹣3>﹣m+5,
解得m>4,
∴当m>4时,x>y.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
20、x>1
【解析】
考点:解一元一次不等式.
分析:先移项,再合并同类项,系数化为1即可.
解:移项得,2x>5+1,
合并同类项得,2x>6,
系数化为1得,x>1.
故答案为x>1.
点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.
21、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
【详解】
解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
故答案为1.
本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
22、 .
【解析】
由题意得OA=OA1=2,
∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,
∴B1(2,0),B2(6,0),B3(14,0)…,
2=22﹣2,6=23﹣2,14=24﹣2,…
∴Bn的横坐标为,
故答案为:.
23、1
【解析】
根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.
【详解】
∵在Rt△ABC中,∠C=90°,∠A=30°,
∴=,
∵BC=6,
∴AB=1.
故答案为1.
本题主要考查含30度角的直角三角形的知识点,此题较简单,需要同学们熟记直角三角形的性质:30°所对的直角边等于斜边的一半.
二、解答题(本大题共3个小题,共30分)
24、(1)BC=5;(2);(3)的长为或3或.
【解析】
(1)根据垂直平分线性质可知,设,,在中用勾股定理求出,即可解答;
(2)联结,,在中,,在中,,消去二次项即可得到与的函数关系式;根据点是边上的一动点结合(1)即可得出的定义域;
(3)分三种情况讨论,分别画出图形,根据相等的边用勾股定理列方程求解即可.
【详解】
解:(1)∵梯形中,,,,
∴,
∵是线段的垂直平分线,
∴,
在中,,
又∵,,设,,
,
∴,
∴.
(2)联结,,
∵是线段的垂直平分线,
∴
∵,,
∴
在中,
在中,
∴
∴
(3)在中,,,
∴,
当是等腰三角形时
①∵
∴
∵
∴
∴
②
取中点,联结
∵为的中点
∴为梯形中位线
∴
∵
∴为中点,
∴此时与重合
∴
③
联结并延长交延长线于点
此时.
∴,,
∴,
∴在中,,
∵
∴解得,(不合题意含去)
∴综上所述,当是等腰三角形时,的长为或3或
本题综合考查了矩形的性质、勾股定理解三角形、等腰三角形性质和判定、全等三角形性质和判定,灵活运用勾股定理求线段长是解题的关键.
25、(1)(-1,-3),(1,-3);(2)x>;(3)当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.
【解析】
(1)直接利用中心对称的性质得出对应点位置进而得出答案;
(2)由待定系数法可求直线AB的解析式,即可求解;
(3)分A'C'为边和对角线两种情况讨论,由平行四边形的性质可求点M坐标.
【详解】
解:(1)如图,△A'B'C'为所求,
∴A'(-1,-3),C'(1,-3)
故答案为:(-1,-3),(1,-3)
(2)∵AB所在直线的函数表达式是y=kx+b,且过A(-1,3),B(-3,-1),
∴,解得:
∴AB所在直线的函数表达式是y=2x+5
∴不等式2x+5>2的解集为:x>,
故答案为:x>;
(3)∵A'(-1,-3),C'(1,-3)
∴A'C'=2,A'C'∥x轴,
若A'C'为边,
∵以A′,C′,M,N为顶点的四边形是平行四边形
∴MN=A'C'=2,MN∥A'C'
∵点N在y轴上,
∴点M的横坐标为2或-2,
∵y=2×2+5=9或y=2×(-2)+5=1
∴点M(2,9)或(-2,1)
若A'C'为对角线,
∵以A′,C′,M,N为顶点的四边形是平行四边形
∴MN与A'C'互相平分,
∵点N在y轴上,A'C'的中点也在y轴上,
∴点M的横坐标为0,
∴y=5
∴点M(0,5)
综上所述:当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.
本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,中心对称的性质,利用分类讨论思想解决问题是本题的关键.
26、x1=,x2=.
【解析】
方程整理后,利用公式法求出解即可.
【详解】
解:方程整理得:x2-3x+1=0,
这里a=1,b=-3,c=1,
∵△=9-4=5,
∴x=,
解得:x1=,x2=.
此题考查了解一元二次方程-公式法,以及配方法,熟练掌握各种解法是解本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】: 这是一份2024年上海市宝山区淞谊中学数学九上开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省武邑中学数学九上开学综合测试模拟试题【含答案】: 这是一份2024年河北省武邑中学数学九上开学综合测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。