![2024年上海市市西初级中学数学九年级第一学期开学考试试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16216756/0-1728020388215/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年上海市市西初级中学数学九年级第一学期开学考试试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16216756/0-1728020388286/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2024年上海市市西初级中学数学九年级第一学期开学考试试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16216756/0-1728020388298/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2024年上海市市西初级中学数学九年级第一学期开学考试试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在一次数学测验中,一学习小组七人的成绩如表所示:
则这七人成绩的中位数是( )
A.22B.89C.92D.96
2、(4分)以下四个命题正确的是
A.平行四边形的四条边相等
B.矩形的对角线相等且互相垂直平分
C.菱形的对角线相等
D.一组对边平行且相等的四边形是平行四边形
3、(4分)下列式子正确的是( )
A.若,则x<yB.若bx>by,则x>y
C.若,则x=yD.若mx=my,则x=y
4、(4分)一次函数的图象不经过( )
A.第四象限B.第三象限C.第二象限D.第一象限
5、(4分)一组数据5,8,8,12,12,12,44的众数是( )
A.5B.8C.12D.44
6、(4分)函数 y=中,自变量x的取值范围是( )
A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣2
7、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
8、(4分)在一次英语单词听写比赛中共听写了16个单词,每听写正确1个得1分,最后全体参赛同学的听写成绩统计如下表:
则听写成绩的众数和中位数分别是( ).
A.15,14B.15,15
C.16,15D.16,14
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若有意义,则的取值范围为_________.
10、(4分)已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
11、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
12、(4分)如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.
13、(4分)已知点与点关于y轴对称,则__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线的解析式为,与轴交于点,直线经过点(0,5),与直线交于点(﹣1,),且与轴交于点.
(1)求点的坐标及直线的解析式;
(2)求△的面积.
15、(8分)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(,),AB=1,AD=1.
(1)直接写出B、C、D三点的坐标;
(1)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数()的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.
16、(8分)已知x=,y=,求的值.
17、(10分) (1)因式分解:; (2)计算:.
18、(10分)如图,四边形中,,将绕点顺时针旋转一定角度后,点的对应点恰好与点重合,得到.
(1)判断的形状,并说明理由;
(2)若,,试求出四边形的对角线的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.
20、(4分)若是一元二次方程的一个根,则根的判别式与平方式的大小比较_____(填>,<或=).
21、(4分)甲,乙两人进行飞镖比赛,每人各投1次,甲的成绩(单位:环)为:9,8,9,1,10,1.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是______.(填“甲”或“乙”)
22、(4分)如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.
23、(4分)已知一次函数y=kx+2的图象与x轴交点的横坐标为6,则当-3≤x≤3时,y的最大值是______.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系xOy中,对于与坐标轴不平行的直线l和点P,给出如下定义:过点P作x轴,y轴的垂线,分别交直线l于点M,N,若PM+PN≤4,则称P为直线l的近距点,特别地,直线上l所有的点都是直线l的近距点.已知点A(-,0),B(0,2),C(-2,2).
(1)当直线l的表达式为y=x时,
①在点A,B,C中,直线l的近距点是 ;
②若以OA为边的矩形OAEF上所有的点都是直线l的近距点,求点E的纵坐标n的取值范围;
(2)当直线l的表达式为y=kx时,若点C是直线l的近距点,直接写出k的取值范围.
25、(10分)一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.
(1)求出该一次函数的表达式;
(2)画出该一次函数的图象;
(3)判断(﹣5,﹣4)是否在这个函数的图象上?
(4)求出该函数图象与坐标轴围成的三角形面积.
26、(12分)如图,在中,对角线BD平分,过点A作,交CD的延长线于点E,过点E作,交BC延长线于点F.
(1)求证:四边形ABCD是菱形;
(2)若求EF的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据中位数的定义求解即可.
【详解】
∵从小到大排列后,成绩排在第四位的是96分,
∴中位数是96.
故选D.
此题主要考查了中位数的意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.
2、D
【解析】
根据平行四边形的性质与判定、矩形的性质和菱形的性质判断即可.
【详解】
解:A、菱形的四条边相等,错误;
B、矩形的对角线相等且平分,错误;
C、菱形的对角线垂直,错误;
D、一组对边平行且相等的四边形是平行四边形,正确.
故选D.
本题考查了命题与定理的知识,解题的关键是了解平行四边形的性质、矩形的性质和菱形的性质,难度一般.
3、C
【解析】
A选项错误,,若a>0,则x<y;若a<0,则x>y;
B选项错误,bx>by,若b>0,则x>y;若b<0,则x<y;
C选项正确;
D选项错误,当m=0时,x可能不等于y.
故选C.
点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.
4、D
【解析】
根据一次函数中k,b的正负即可确定.
【详解】
解:因为,所以函数经过二、三、四象限,不过第一象限.
故选:D
本题考查了一次函数图象,熟练掌握由一次k,b的正负确定其经过的象限是解题的关键.
5、C
【解析】
根据题目中的数据可以得到这组数据的众数,从而可以解答本题.
【详解】
解:∵一组数据5,8,8,12,12,12,44,
∴这组数据的众数是12,
故选C.
本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.
6、B
【解析】
依题意,得x+2≥0,
解得:x≥-2.
故选B.
7、C
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,又是中心对称图形,故本选项正确;
D、是轴对称图形,不是中心对称图形,故本选项错误.
故选:C.
本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
8、C
【解析】
根据表格中的数据可知16出现的次数最多,从而可以得到众数,一共20个数据,中位数是第10个和第11个的平均数,本题得以解决.
【详解】
由表格可得,16出现的次数最多,所以听写成绩的众数是16;
一共20个数据,中位数是第10个和第11个的平均数为5,即中位数为5,
故选:C.
考查了众数和中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根式有意义,被开方式要大于等于零.
【详解】
解:∵有意义,
∴2x0,
解得:
故填.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
10、﹣1
【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
整理得k2+1k=0,解得k1=0,k2=﹣1,
因为k≠0,
所以k的值为﹣1.
故答案为:﹣1.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
11、3≤S≤1.
【解析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
【详解】
∵点A、B的坐标分别为(-5,0)、(-2,0),
∴AB=3,
y=-2x2+4x+8=-2(x-1)2+10,
∴顶点D(1,10),
由图象得:当0≤x≤1时,y随x的增大而增大,
当1≤x≤3时,y随x的增大而减小,
∴当x=3时,即m=3,P的纵坐标最小,
y=-2(3-1)2+10=2,
此时S△PAB=×2AB=×2×3=3,
当x=1时,即m=1,P的纵坐标最大是10,
此时S△PAB=×10AB=×10×3=1,
∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;
故答案为3≤S≤1.
本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.
12、3
【解析】
∵BE平分∠ABC,
∴∠ABE=∠CBE,
又∵∠ABE和∠CEB为内错角,
∴∠ABE=∠CEB,
∴∠CEB=∠CBE,
∴CE=BC=AD=6㎝,
∵DC=AB=9㎝,
∴DE=3cm.
13、-1
【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后相加即可得解.
【详解】
∵点P(a,−4)与点Q(−3,b)关于y轴对称,
∴a=3,b=−4,
∴a+b=3+(−4)=−1.
故答案为:−1.
考查关于y轴对称的点的坐标特征:纵坐标不变,横坐标互为相反数.
三、解答题(本大题共5个小题,共48分)
14、(1);(2) .
【解析】
(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;
(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.
【详解】
(1)∵直线: 经过点(﹣1,),
∴=1+2=3,
∴C(﹣1,3),
设直线的解析式为 ,
∵经过点(0,5),(﹣1,3),
∴,
解得:
∴直线的解析式为;
(2)当=0时,2+5=0,
解得,
则(,0),
当=0时,﹣+2=0
解得=2,
则(2,0),
∴.
此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.
15、(2)B(,),C(,),D(,);(2)m=4,.
【解析】
试题分析:(2)由矩形的性质即可得出结论;
(2)根据平移的性质将矩形ABCD向右平移m个单位,得到A′(,),C(,),由点A′,C′在反比例函数()的图象上,得到方程,即可求得结果.
试题解析:(2)∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=2,∵A(,),AD∥x轴,∴B(,),C(,),D(,);
(2)∵将矩形ABCD向右平移m个单位,∴A′(,),C(,),∵点A′,C′在反比例函数()的图象上,∴,解得:m=4,∴A′(2,),∴,∴矩形ABCD的平移距离m=4,反比例函数的解析式为:.
考点:2.反比例函数综合题;2.坐标与图形变化-平移.
16、30
【解析】
试题分析:先求出xy与x+y的值,再根据分式的加减法则进行计算即可;
试题解析:∵x=,y=,
∴xy=×=1,x+y=+=3+2+3-2=6,
所以原式=-4
=36-2-4
=30.
17、 (1);(2)m
【解析】
(1)先对原式提取公因式x,再用完全平方差公式分解即可得到答案;
(2)先对括号的式子进行通分,再把括号外的式子的分母用平方差公式分解,再进行约分化简即可得到答案.
【详解】
解:(1) ==.
(2)原式=
=
=
=.
本题主要考查了因式分解和分式的混合运算.掌握用公式法分解因式以及提取公因式法分解因式是解题的关键.
18、(1)是等腰直角三角形,理由详见解析;(2)
【解析】
(1)利用旋转不变性证明A4BC是等腰直角三角形.
(2)证明ACDE是等腰直角三角形,再在Rt△ADE中,求出AE即可解决问题.
【详解】
解:(1)是等腰直角三角形.
理由:∵,
∴,
∴,
∴是等腰直角三角形.
(2)如图:由旋转的性质可知:
,,,
∴,,
∵,
∴,
∴,
∴.
本题考查旋转变换,勾股定理,等腰直角三角形的性质和判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型
一、填空题(本大题共5个小题,每小题4分,共20分)
19、2或
【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则, II. 当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.
【详解】
解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.
设AE=FC=x.
由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.
∵AE∥DG,
∴∠AED=∠EDF.
∴∠DEP=∠EDF.
∴EF=DF.
∴GF=DF﹣DG=x+1.
在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).
∴EF=2x+1=2×2+1=2.
II. 当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,
在Rt△EFG中,∵EF2=EG2+FG2,
∴(2x﹣1)2=42+(x﹣1)2,
∴x=或﹣2(舍弃),
∴EF=2x﹣1=
故答案为:2或.
本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
20、=
【解析】
首先把(2ax0+b)2展开,然后把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,再代入前面的展开式中即可得到△与M的关系.
【详解】
把x0代入方程ax2+bx+c=0中得ax02+bx0=-c,
∵(2ax0+b)2=4a2x02+4abx0+b2,
∴(2ax0+b)2=4a(ax02+bx0)+b2=-4ac+b2=△,
∴M=△.
故答案为=.
本题是一元二次方程的根与根的判别式的结合试题,既利用了方程的根的定义,也利用了完全平方公式,有一定的难度.
21、甲.
【解析】
先计算出甲的平均数,再计算甲的方差,然后比较甲乙方差的大小可判定谁的成绩稳定.
【详解】
甲的平均数,
所以甲的方差,
因为甲的方差比乙的方差小,
所以甲的成绩比较稳定.
故答案为:甲.
本题考查方差的定义:一般地设n个数据,,,…,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
22、y=2x+1
【解析】
试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.
解:由图象可知,点(0,0)、(2,4)在直线OA上,
∴向上平移1个单位得到的点是(0,1)(2,5),
那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,
则b=1,2k+b=5
解得:k=2.
∴y=2x+1.
故答案为:y=2x+1.
点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.
23、1≤y≤1
【解析】
将点(6,0)代入解析式即可求出k的值,得到一次函数的增减性,然后结合自变量的取值范围得到函数值的取值范围即可.
【详解】
∵一次函数的图象与x轴交点的横坐标为,
∴这个交点的坐标为(6,0),
把(6,0)代入中得:
,
,
∵<0,y随x的增大而减小,
当时,=1.
当时,.
则.
故答案是:.
本题考查了利用直线上点坐标确定解析式,熟练掌握直线上任意一点的坐标都满足函数关系式;对于一次函数求极值问题可通过增减性求,也可以代特殊值求出.
二、解答题(本大题共3个小题,共30分)
24、(1)①A,B;②n的取值范围是,且;(2) .
【解析】
【分析】(1)①根据PM+PN≤4,进行判断;②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.分两种情况分析:EF在OA上方,当点E在直线l1上时,n的值最大;EF在OA下方,当点F在直线l2上时,n的值最小,当时,EF与AO重合,矩形不存在,所以可以分析出n的取值范围;
(2)根据定义,结合图形可推出:.
【详解】解:(1)①A,B;
②当PM+PN=4时,可知点P在直线l1:,直线l2:上.所以直线l的近距点为在这两条平行线上和在这两条平行线间的所有点.
如图1,EF在OA上方,当点E在直线l1上时,n的值最大,为.
如图2,EF在OA下方,当点F在直线l2上时,n的值最小,为.
当时,EF与AO重合,矩形不存在.
综上所述,n的取值范围是,且.
(2).
【点睛】本题考核知识点:一次函数和矩形综合,新定义知识.解题关键点:理解新定义.
25、(1)y=3x﹣2;(2)图象见解析;(3)(﹣5,﹣4)不在这个函数的图象上;(4).
【解析】
(1)利用待定系数法即可求得;
(2)利用两点法画出直线即可;
(3)把x=﹣5代入解析式,即可判断;
(4)求得直线与坐标轴的交点,即可求得.
【详解】
解:(1)设一次函数的解析式为y=kx+b
∵一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点
∴,
解得:
∴一次函数的表达式为y=3x﹣2;
(2)描出A、B点,作出一次函数的图象如图:
(3)由(1)知,一次函数的表达式为y=3x﹣2
将x=﹣5代入此函数表达式中得,y=3×(﹣5)﹣2=﹣17≠﹣4
∴(﹣5,﹣4)不在这个函数的图象上;
(4)由(1)知,一次函数的表达式为y=3x﹣2
令x=0,则y=﹣2,令y=0,则3x﹣2=0,
∴x=,
∴该函数图象与坐标轴围成的三角形面积为:×2×=.
本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,一次函数的图象以及三角形的面积,熟练掌握待定系数法是解题的关键.
26、 (1)见解析;(2)
【解析】
(1)证明,得出,即可得出结论;
(2)由菱形的性质得出,证明四边形ABDE是平行四边形,,得出,在中,由等腰直角三角形的性质和勾股定理即可求出EF的长.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
,
∵BD平分,
,
,
,
是菱形;
(2)解:∵四边形ABCD是菱形,
,
,
∴四边形ABDE是平行四边形,,
,
,
,
是等腰直角三角形,
.
本题考查了平行四边形的性质与判定、菱形的判定与性质、等腰三角形的判定以及等腰直角三角形的判定与性质;熟练掌握菱形判定与性质是解决问题的关键.
题号
一
二
三
四
五
总分
得分
成绩(分)
78
89
96
100
人数
1
2
3
1
成绩(分)
12
13
14
15
16
人数(个)
1
3
4
5
7
2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年上海市长宁区西延安中学数学九年级第一学期开学检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年上海市文来中学数学九年级第一学期开学检测模拟试题【含答案】: 这是一份2024年上海市文来中学数学九年级第一学期开学检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年上海市复旦初级中学数学九上开学质量跟踪监视试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。