终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届汕头市金平区九上数学开学达标检测试题【含答案】

    立即下载
    加入资料篮
    2025届汕头市金平区九上数学开学达标检测试题【含答案】第1页
    2025届汕头市金平区九上数学开学达标检测试题【含答案】第2页
    2025届汕头市金平区九上数学开学达标检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届汕头市金平区九上数学开学达标检测试题【含答案】

    展开

    这是一份2025届汕头市金平区九上数学开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若一个正多边形的一个内角是135°,则这个正多边形的边数是( )
    A.10B.9C.8D.6
    2、(4分)下列说法中错误的是( )
    A.“买一张彩票中奖”发生的概率是0
    B.“软木塞沉入水底”发生的概率是0
    C.“太阳东升西落”发生的概率是1
    D.“投掷一枚骰子点数为8”是确定事件
    3、(4分)甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是( )
    A.=B.=C.=D.=
    4、(4分)已知一次函数的图象过点(0,3),且与两坐标轴围成的三角形的面积为3,则这个一次函数的表达式为( )
    A.y=1.5x+3B.y=-1.5x+3
    C.y=1.5x+3或y=-1.5x+3D.y=1.5x-3或y=-1.5x-3
    5、(4分)如图,在菱形ABCD中,∠BAD=60°,AB=2,E是DC边上一个动点,F是AB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,y与x满足的函数关系的图象大致如图所示,则这条线段可能是图中的( ).
    A.线段ECB.线段AEC.线段EFD.线段BF
    6、(4分)顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )
    ①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.
    A.①③B.②③C.③④D.②④
    7、(4分)如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
    A.1B.2C.3D.4
    8、(4分)如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若,,则BD的长为( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,已知点是双曲线在第一象限上的一动点,连接,以为一边作等腰直角三角形(),点在第四象限,随着点的运动,点的位置也不断的变化,但始终在某个函数图像上运动,则这个函数表达式为______.
    10、(4分)如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.给出如下结论:
    ①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④FH=BD
    其中正确结论的为______(请将所有正确的序号都填上).
    11、(4分)已知:如图,四边形中,,要使四边形为平行四边形,需添加一个条件是:__________.(只需填一个你认为正确的条件即可)
    12、(4分)若分式 有意义,则的取值范围是_______________ .
    13、(4分)如图,在四边形ABCD中,对角线AC,BD交于点O,且OA=OC,OB=OD,要使四边形ABCD为矩形,则需要添加的条件是_______(只填一个即可).
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图是一块四边形的草坪ABCD,经测量得到以下数据:CD=AC=2BC=20m,AB=10m,∠ACD=90°.
    (1)求AD的长;
    (2)求∠ABC的度数;
    (3)求四边形ABCD的面积.
    15、(8分)先化简,再求值(1)已知,求的值.
    (2)当时,求的值.
    16、(8分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验两人在相同条件下各射靶次,命中的环数如下:
    甲:,,,,,,,,,
    乙:,,,,,,,,,
    (1)分别计算两组数据的方差.
    (2)如果你是教练你会选拔谁参加比赛?为什么?
    17、(10分)如图1,菱形纸片,对其进行如下操作:
    把翻折,使得点与点重,折痕为;把翻折,使得点与点重合,折痕为 (如图2),连结.设两条折痕的延长线交于点.
    (1)请在图2中将图形补充完整,并求的度数;
    (2)四边形是菱形吗?说明理由.
    18、(10分)如图,在矩形中,点为上一点,连接、,.
    (1)如图1,若,,求的长.
    (2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)一辆汽车的行驶距离s(单位:m)与行驶时间t(单位:s)的函数关系式是s=9t+,则汽车行驶380m需要时间是______s.
    20、(4分)如果a+b=8,a﹣b=﹣5,则a2﹣b2的值为_____.
    21、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
    22、(4分)若方程的两根互为相反数,则________.
    23、(4分)某学习小组有5人,在一次数学测验中的成绩分别是102, 106, 100, 105, 102,则他们成绩的平均数_______________
    二、解答题(本大题共3个小题,共30分)
    24、(8分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,且点A,B均在格点上.
    (1)在图①中以AB为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;
    (2)在图②中以AB为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;
    (3)图①中所画的矩形的面积为 ;图②中所画的菱形的周长为 .
    25、(10分)如图,在梯形ABCD中,AD∥BC,AB=4,∠C=30°,点E、F分别是边AB、CD的中点,作DP∥AB交EF于点G,∠PDC=90°,求线段GF的长度.
    26、(12分)已知关于x的一元二次方程的两个实数根为x1、x2且x1+2x2=9,求m的值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.
    【详解】
    ∵正多边形的一个内角是135°,
    ∴该正多边形的一个外角为45°,
    ∵多边形的外角之和为360°,
    ∴边数==1,
    ∴这个正多边形的边数是1.
    故选:C.
    本题主要考查正多边形内角与外角度数,掌握多边形的外角之和为360°,是解题的关键.
    2、A
    【解析】
    直接利用概率的意义以及事件的确定方法分别分析得出答案.
    【详解】
    A、“买一张彩票中奖”发生的概率是0,错误,符合题意;
    B、“软木塞沉入水底”发生的概率是0,正确,不合题意;
    C、“太阳东升西落”发生的概率是1,正确,不合题意;
    D、“投掷一枚骰子点数为8”是确定事件,正确,不合题意;
    故选:A.
    此题主要考查了概率的意义以及事件的确定方法,解题关键是正确理解概率的意义.
    3、A
    【解析】
    设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.
    【详解】
    设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,
    根据题意得:=.
    故选A.
    本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
    4、C
    【解析】
    先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.
    【详解】
    解:∵一次函数y=kx+b(k≠0)图象过点(0,3),
    ∴b=3,
    令y=0,则x=-,
    ∵函数图象与两坐标轴围成的三角形面积为2,
    ∴×2×|-|=2,
    即||=2,
    解得:k=±1.5,
    则函数的解析式是y=1.5x+3或y=-1.5x+3.
    故选C.
    本题考查一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性,注意点的坐标和线段长度的转化.
    5、B
    【解析】
    分析:求出当点E与点D重合时,即x=0时EC、AE、EF、BF的长可排除C、D;当点E与点C重合时,即x=2时,求出EC、AE的长可排除A,可得答案.
    详解:当点E与点D重合时,即x=0时,EC=DC=2,AE=AD=2,
    ∵∠A=60°,∠AEF=30°,
    ∴∠AFD=90°,
    在Rt△ADF中,∵AD=2,
    ∴AF=AD=1,EF=DF=ADcs∠ADF=,
    ∴BF=AB-AF=1,结合图象可知C、D错误;
    当点E与点C重合时,即x=2时,
    如图,连接BD交AC于H,
    此时EC=0,故A错误;
    ∵四边形ABCD是菱形,∠BAD=60°,
    ∴∠DAC=30°,
    ∴AE=2AH=2ADcs∠DAC=2×2×=2,故B正确.
    故选:B.
    点睛:本题主要考查动点问题的函数图象与菱形的性质、解直角三角形的应用,结合函数图象上特殊点的实际意义排除法求解是解此题的关键.
    6、D
    【解析】
    有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.
    【详解】
    如图点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
    ∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
    ∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.
    ∴AC⊥BD.
    ①平行四边形的对角线不一定互相垂直,故①错误;
    ②菱形的对角线互相垂直,故②正确;
    ③矩形的对角线不一定互相垂直,故③错误;
    ④对角线互相垂直的四边形,故④正确.
    综上所述,正确的结论是:②④.
    故选D.
    此题主要考查矩形的性质及三角形中位线定理的综合运用.
    7、D
    【解析】
    根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠1,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠1=10°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=10°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
    【详解】
    ∵AD∥BC,AE∥CD,
    ∴四边形AECD是平行四边形.
    ∵AD=DC,
    ∴四边形AECD是菱形,
    ∴AE=EC=CD=AD=2,
    ∴∠2=∠1.
    ∵∠1=∠2,
    ∴∠1=∠2=∠1.
    ∵∠ABC=90°,
    ∴∠1+∠2+∠1=90°,
    ∴∠1=∠2=∠1=10°,
    ∴BE=AE,AC=2AB.本答案正确;
    ∴BE=1,
    在Rt△ABE中,由勾股定理,得
    AB=.本答案正确;
    ∵O是AC的中点,∠ABC=90°,
    ∴BO=AO=CO=AC.
    ∵∠1=∠2=∠1=10°,
    ∴∠BAO=60°,
    ∴△ABO为等边三角形.
    ∵∠1=∠2,
    ∴AE⊥BO.本答案正确;
    ∵S△ADC=S△AEC=,
    ∵CE=2,BE=1,
    ∴CE=2BE,
    ∴S△ACE=,
    ∴S△ACE=2S△ABE,
    ∴S△ADC=2S△ABE.本答案正确.
    ∴正确的个数有4个.
    故选D.
    本题考查了平行四边形的判定,菱形的判定及性质的运用,直角三角形的性质的性质的运用,勾股定理的运用,三角形的面积公式的运用,等边三角形的性质的运用.解答时证明出四边形AECD是菱形是解答本题的关键
    8、B
    【解析】
    根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.
    【详解】
    ∵,
    ∴AO=3,
    ∵AB⊥AC,
    ∴BO==5
    ∴BD=2BO=10,
    故选B.
    此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,由全等三角形的判定定理可知△AOD△OBE(ASA),故可得出,即可求得的值.
    【详解】
    解:设点B所在的反比例函数解析式为,分别过点A、B作AD⊥轴于 D,BE⊥轴于点E,如图:
    ∵∠AOE+∠DOB=90°,∠AOE+∠OAD=90°,
    ∴∠OAD=∠BOE,
    同理可得∠AOD=∠OBE,
    在△AOD和△OBE中, ,
    ∴△AOD△OBE(ASA),
    ∵点B在第四象限,
    ∴,即,
    解得,
    ∴反比例函数的解析式为:.
    故答案为.
    本题考查动点问题,难度较大,是中考的常考知识点,正确作出辅助线,证明两个三角形全等是解题的关键.
    10、①③④
    【解析】
    根据已知先判断△ABC≌△EFA,则∠AEF=∠BAC,得出EF⊥AC,由等边三角形的性质得出∠BDF=30°,从而证得△DBF≌△EFA,则AE=DF,再由FE=AB,得出四边形ADFE为平行四边形而不是菱形,根据平行四边形的性质得出AD=4AG,从而得到答案.
    【详解】
    解:∵△ACE是等边三角形,
    ∴∠EAC=60°,AE=AC,
    ∵∠BAC=30°,
    ∴∠FAE=∠ACB=90°,AB=2BC,
    ∵F为AB的中点,
    ∴AB=2AF,
    ∴BC=AF,
    ∴△ABC≌△EFA,
    ∴FE=AB,
    ∴∠AEF=∠BAC=30°,
    ∴EF⊥AC,故①正确,
    ∵EF⊥AC,∠ACB=90°,
    ∴HF∥BC,
    ∵F是AB的中点,
    ∴HF=BC,
    ∵BC=AB,AB=BD,
    ∴HF=BD,故④说法正确;
    ∵AD=BD,BF=AF,
    ∴∠DFB=90°,∠BDF=30°,
    ∵∠FAE=∠BAC+∠CAE=90°,
    ∴∠DFB=∠EAF,
    ∵EF⊥AC,
    ∴∠AEF=30°,
    ∴∠BDF=∠AEF,
    ∴△DBF≌△EFA(AAS),
    ∴AE=DF,
    ∵FE=AB,
    ∴四边形ADFE为平行四边形,
    ∵AE≠EF,
    ∴四边形ADFE不是菱形;
    故②说法不正确;
    ∴AG=AF,
    ∴AG=AB,
    ∵AD=AB,
    则AD=4AG,故③说法正确,
    故答案为①③④.
    考点:菱形的判定;等边三角形的性质;含30度角的直角三角形.
    11、.(答案不唯一)
    【解析】
    由AO=OC,根据对角线互相平分的四边形是平行四边形,即可得添加BO=OD即可.
    【详解】
    添加的BO=OD.
    理由:∵在四边形ABCD中,BO=DO,AO=CO,
    ∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).
    此题考查了平行四边形的判定.此题难度不大,注意掌握平行四边形的判定定理是解此题的关键.
    12、
    【解析】
    【分析】根据分式有意义的条件进行求解即可得.
    【详解】由题意得:x-1≠0,
    解得:x≠1,
    故答案为:x≠1.
    【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
    13、∠DAB=90°.
    【解析】
    根据对角线互相平分线的四边形为平行四边形可得四边形ABCD是平行四边形,添加条件∠DAB=90°可根据有一个角是直角的平行四边形是矩形进行判定.
    【详解】
    解:可以添加条件∠DAB=90°,
    ∵AO=CO,BO=DO,
    ∴四边形ABCD是平行四边形,
    ∵∠DAB=90°,
    ∴四边形ABCD是矩形,
    故答案为∠DAB=90°.
    此题主要考查了矩形的判定,关键是掌握矩形的判定定理.
    三、解答题(本大题共5个小题,共48分)
    14、 (1)40m;(2) ∠ABC=90°;(3)cm2
    【解析】
    (1)直接利用勾股定理计算即可;(2) 由勾股定理得逆定理可得结果;(3) 利用四边形ABCD的面积=即可得出结果.
    【详解】
    (1)解:在RtΔACD中,∠ACD=90°,根据勾股定理得:
    =
    =40m
    (2)解:在ΔABC中,,,

    由勾股定理得逆定理得
    ∴ΔABC是直角三角形,且∠ABC=90°
    (3)解:四边形ABCD的面积=(m2)
    本题考查了勾股定理以及勾股定理的逆定理的应用,直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
    15、(1);(2)
    【解析】
    (1) 先根据分式混合运算的法则把原式进行化简,再把代入进行计算即可; (2)先把分式进行化简计算,在化简时要注意运算顺序,然后再把x= 代入化简后的式子即可得到答案.
    【详解】
    (1)解:原式= (2分)=
    ==
    当,原式==
    (2)解:原式

    当时,原式
    本题考查的是分式的化简求值,分式化简求值时,先化简再把分式中未知数对应的值代入求出分式的值.
    16、 (1) ,;(2) 选拔乙参加比赛.理由见解析.
    【解析】
    (1)先求出平均数,再根据方差的定义求解;
    (2)比较甲、乙两人的成绩的方差作出判断.
    【详解】
    解:(1),



    (2)因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,所以乙同学的成绩较稳定,应选乙参加比赛.
    本题考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    17、(1)见解析,;(2)四边形是菱形,理由见解析
    【解析】
    (1)由菱形的性质可得AD=CD,∠A=∠C=45°,∠ADC=135°,由折叠的性质可得AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,由四边形的内角和定理可求解;
    (2)由题意可证GE∥DH,GD∥HF,可证四边形DGOH是平行四边形,由“ASA”可证△DEG≌△DFH,可得DG=DH,即可证四边形DGOH是菱形.
    【详解】
    解:(1)如图,延长EG,FH交于点O,
    ∵四边形ABCD是菱形,∠A=45°,
    ∴AD=CD,∠A=∠C=45°,∠ADC=135°,
    ∵把△AEG翻折,使得点A与点D重合,折痕为EG;把△CFH翻折,使得点C与点D重合,折痕为FH,
    ∴AE=DE=AD,GE⊥AD,∠A=∠GDA=45°,DF=FC=CD,HF⊥CD,∠C=∠CDH=45°,
    ∵∠EOF+∠OED+∠OFD+∠ADC=360°,
    ∴∠EOF=360°-90°-90°-135°=45°;
    (2)四边形是菱形.理由如下:
    ∵∠ADC=135°,∠ADG=∠CDH=45°,
    ∴∠GDC=∠ADH=90°,且GE⊥AD,HF⊥CD,
    ∴GE∥DH,GD∥HF,
    ∴四边形DGOH是平行四边形,
    ∵AE=DE=AD,DF=FC=CD,AD=CD,
    ∴DE=DF,且∠ADG=∠CDH=45°,∠DEG=∠DFH=90°,
    ∴△DEG≌△DFH(ASA)
    ∴DG=DH,
    ∴四边形DGOH是菱形.
    本题考查了翻折变换,菱形的判定和性质,平行四边形的判定和性质,以及全等三角形的判定和性质,灵活运用折叠的性质进行解题是本题的关键.
    18、(1);(2)见解析
    【解析】
    (1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;
    (2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.
    【详解】
    解:(1)∵矩形,∴
    又∵

    设,在中,

    解得:,(舍)

    ∵矩形∴,

    在中,,
    ∴;
    (2)如答图,延长交的延长线于
    ∵,∴
    又∵为的中点,∴
    在和中

    ∴,
    ∵,




    本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、20
    【解析】
    令S=380m,即可求出t的值.
    【详解】
    解:当s=380m时,9t+t2=380,
    整理得t2+18t﹣760=0,
    即(t﹣20)(t+38)=0,
    解得t1=20,t2=﹣38(舍去).
    ∴行驶380米需要20秒,
    故答案为:20
    本题主要考查根据函数值求自变量的值,能够利用方程的思想是解题的关键.
    20、-1
    【解析】
    根据平方差公式求出即可.
    【详解】
    解:∵a+b=8,a﹣b=﹣5,
    ∴a2﹣b2
    =(a+b)(a﹣b)),
    =8×(﹣5),
    =﹣1,
    故答案为:﹣1.
    本题主要考查了乘法公式的应用,准确应用平方差公式和完全平方公式是解题的关键.
    21、
    【解析】
    设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
    【详解】
    解:设一次函数解析式为y=kx+b,
    把(0,-1)代入得b=-1,
    ∵直线y=kx+b与直线y=1-3x平行,
    ∴k=-3,
    ∴一次函数解析式为y=-3x-1.
    故答案为:y=-3x-1.
    本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
    22、
    【解析】
    根据一元二次方程根与系数的关系即可求出答案.
    【详解】
    ∵两根互为相反数,
    ∴根据韦达定理得:m² - 1 = 0,
    解得:m = 1 或 m = -1
    当 m = 1 时,方程是 x² + 1 = 0 没有实数根
    当 m = -1 时,方程是 x² - 1 = 0 有两个实数根
    所以 m = -1
    故答案为:-1
    本题考查一元二次方程根与系数的关系,x1+x2=,x1x2=,熟练掌握韦达定理并进行检验是否有实数根是解题关键.
    23、103
    【解析】
    首先根据平均数的计算公式表示出他们的平均成绩,接下来对其进行计算即可.注意:加权平均数与算术平均数的区别.
    【详解】
    由题意得,某学习小组成绩的平均数是(102+106+100+105+102)÷5=103,
    故答案为:103.
    此题考查平均数,解答本题的关键是熟练掌握平均数的计算公式.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)见解析;(3)8,4.
    【解析】
    (1)根据矩形的性质画图即可;
    (2)根据菱形的性质画图即可;
    (3)根据矩形的面积公式和菱形的周长公式即可得到结论.
    【详解】
    解:(1)如图①所示,矩形ACBD即为所求;
    (2)如图②所示,菱形AFBE即为所求;
    (3)矩形ACBD的面积=2×4=8;菱形AFBE的周长=4×=4,
    故答案为:8,4.
    本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.
    25、线段GF的长度是4
    【解析】
    根据题意得出DP=AB=4,由直角三角形中30º的角所对的直角边等于斜边的一半得到PC=8,再由F为DC的中点,GF∥PC,得到GF为△PDC的中位线,从而求出GF=PC=4.
    【详解】
    解:∵AD∥BC,DP∥AB,
    ∴四边形ABPD是平行四边形,
    ∴DP=AB=4,
    ∵∠PDC=90º,∠C=30º,
    ∴PC=2DP=2×4=8;
    ∵点E、F分别是AB、CD的中点,
    ∴EF∥BC,即GF∥PC,
    ∴GF是△PDC的中位线,
    ∴GF=PC=4.
    故答案为:4.
    本题考查了梯形中位线的判定与性质,三角形中位线的判定与性质,含30º角的直角三角形的性质.
    26、
    【解析】
    【分析】由根与系数的关系可得,x1x2=-m2,再根据x1+2x2=9可求出x1、x2的值,代入x1x2=-m2即可求得m的值.
    【详解】由根与系数可知:
    ,x1x2=-m2,
    解方程组,得: ,
    ∴x1x2=-5,即,
    ∴.
    【点睛】本题考查了一元二次方程根与系数的关系,熟知一元二次方程根与系数的关系是解题的关键.
    一元二次方程根与系数的关系:若x1、x2是一元二次方程ax2+bx+c=0(a≠0)的两个实数根,则有x1+x2=,x1x2=.
    题号





    总分
    得分

    相关试卷

    2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】:

    这是一份2025届山西省(大同)数学九上开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届江西婺源县数学九上开学达标检测模拟试题【含答案】:

    这是一份2025届江西婺源县数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届广东省金平区六校联考九上数学开学检测试题【含答案】:

    这是一份2025届广东省金平区六校联考九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map