2025届山东省烟台市福山区九年级数学第一学期开学复习检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在分式中,的取值范围是( )
A.B.C.D.
2、(4分)一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x+b>ax-3的解集在数轴上表示正确的是( )
A.B.
C.D.
3、(4分)已知一次函数y=(2m-1)x+1的图象上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,那么m的取值范围是( )
A.m<B.m>C.m<2D.m>-2
4、(4分)已知点A(﹣2,a),B(﹣1,b),C(3,c)都在函数y=﹣的图象上,则a、b、c的大小关系是( )
A.a<b<cB.b<a<cC.c<b<aD.c<a<b
5、(4分)如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为( )
A.B.C.D.
6、(4分)如图,EF为△ABC的中位线,若AB=6,则EF的长为( )
A.2B.3C.4D.5
7、(4分)当时,化为最简二次根式的结果是( )
A.B.C.D.
8、(4分)为了比较某校同学汉字听写谁更优秀,语文老师随机抽取了8次听写情况,发现甲乙两人平均成绩一样,甲、乙的方差分别为1.9和2.3,则下列说法正确的是( )
A.甲的发挥更稳定B.乙的发挥更稳定
C.甲、乙同学一样稳定D.无法确定甲、乙谁更稳定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)不等式3x+1<-2的解集是________.
10、(4分)点P(a,b)在第三象限,则直线y=ax+b不经过第_____象限
11、(4分)函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=____.
12、(4分)如图,已知点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,点P(m,0)是x轴上的任意一点,若△PAB的面积为2,此时m的值是______.
13、(4分)若,则.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在正方形ABCD中,E、F分别为AB、BC的中点,连接CE、DF,将△CBE沿CE对折,得到△CGE,延长EG交CD的延长线于点H。
(1)求证:CE⊥DF;
(2)求的值.
15、(8分)如图,在矩形ABCD中,对角线AC、BD相交于点O.若∠AOD=120°,AB=3,求AC的长.
16、(8分)已知:如图,菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,已知OE=,EF=3,求菱形ABCD的周长和面积.
17、(10分)已知a,b满足|a﹣|++(c﹣4)2=1.
(1)求a,b,c的值;
(2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
18、(10分)如图,是等边三角形,,点是射线上任意点(点与点不重合),连接,将线段绕点顺时针旋转得到线段,连接并延长交直线于点.
(1)如图①,猜想的度数是__________;
(2)如图②,图③,当是锐角或钝角时,其他条件不变,猜想的度数,并选取其中一种情况进行证明;
(3)如图③,若,,,则的长为__________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
20、(4分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(________)
21、(4分)分解因式: .
22、(4分)若有意义,则的取值范围为_________.
23、(4分)已知直线过点和点,那么关于的方程的解是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简再求值:,其中a=-2。
25、(10分)某楼盘要对外销售该楼盘共23层,销售价格如下:第八层楼房售价为4000元米,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,
请写出售价元米与楼层x取整数之间的函数关系式.
已知该楼盘每套楼房面积均为100米,若购买者一次性付清所有房款,开发商有两种优惠方案:
方案一:降价,另外每套楼房总价再减a元;
方案二:降价.
老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.
26、(12分)某市为了美化环境,计划在一定的时间内完成绿化面积万亩的任务,后来市政府调整了原定计划,不但绿化面积要在原计划的基础上增加,而且要提前年完成任务,经测算要完成新的计划,平均每年的绿化面积必须比原计划多万亩,求原计划平均每年的绿化面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据分式有意义,分母不等于0列式计算即可得解.
【详解】
由题意得,x-1≠0,
解得x≠1.
故选A.
本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
2、A
【解析】
直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:∵由函数图象可知,
当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,
∴不等式3x+b>ax-3的解集为:x>-2,
在数轴上表示为:
故选:A.
本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.
3、B
【解析】
分析:先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m-1>0,解不等式即可求解.
详解:∵当x1<x2时,有y1<y2
∴y随x的增大而增大
∴2m-1>0,
∴m>.
故选:B.
点睛:本题考查一次函数的图象性质:当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
4、D
【解析】
先把各点代入反比例函数的解析式,求出a、b、c的值,再比较大小即可.
【详解】
∵点A(-2,a),B(-1,b),C(3,c)都在函数的图象上,
∴,
∴b<a<c.
故选B.
考查的是反比例函数图象上点的坐标特点,熟知反比例函数的图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
5、C
【解析】
连接AE,利用△ABE≌△BCF转化线段BF得到BF+DE=AE+DE,则通过作A点关于BC对称点H,连接DH交BC于E点,利用勾股定理求出DH长即可.
【详解】
解:连接AE,如图1,
∵四边形ABCD是正方形,
∴AB=BC,∠ABE=∠BCF=90°.
又BE=CF,
∴△ABE≌△BCF(SAS).
∴AE=BF.
所以BF+DE最小值等于AE+DE最小值.
作点A关于BC的对称点H点,如图2,
连接BH,则A、B、H三点共线,
连接DH,DH与BC的交点即为所求的E点.
根据对称性可知AE=HE,
所以AE+DE=DH.
在Rt△ADH中,DH=
∴BF+DE最小值为4.
故选:C.
本题主要考查正方形的性质,轴对称的性质,全等三角形的判定及性质,勾股定理,能够作出辅助线将线段转化是解题的关键.
6、B
【解析】
根据三角形的中位线的性质即可得到结论.
【详解】
∵EF为△ABC的中位线,若AB=6,
∴EF=AB=3,
故选B.
本题考查了三角形的中位线的性质,熟练掌握三角形中位线定理是解题的关键.
7、B
【解析】
直接利用二次根式的性质结合a,b的符号化简求出答案.
【详解】
解:当a<0,b<0时,
故选:B.
此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.
8、A
【解析】
根据方差越小越稳定即可得出答案.
【详解】
∵1.9<2.3,
∴甲的方差<乙的方差,
∴甲的发挥更稳定,
故选:A.
本题主要考查方差,掌握方差反映的是一组数据的波动情况,方差越大,数据越不稳定,方差越小,数据越稳定是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、.
【解析】
试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.
考点:一元一次不等式的解法.
10、一
【解析】
点在第三象限的条件是:横坐标为负数,纵坐标为负数.进而判断相应的直线经过的象限
【详解】
解:∵点P(a,b)在第三象限,
∴a<0,b<0,
∴直线y=ax+b经过第二、三、四象限,不经过第一象限,
故答案为:一.
此题主要考查四个象限的点坐标特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.掌握直线经过象限的特征即可求解
11、 -2 3
【解析】试题解析:∵y=kx+b的图象平行于直线y=−2x,
∴k=−2,
则直线y=kx+b的解析式为y=−2x+b,
将点(0,3)代入得:b=3,
故答案为:−2,3.
12、﹣1或3
【解析】
把点A(1,a)与点B(b,1)代入反比例函数y=(x>0),求出A,B坐标,延长AB交x轴于点C,如图2,设直线AB的解析式为y=mx+n,求出点C的坐标,用割补法求出PC的值,结合点C的坐标即可.
【详解】
解:∵点A(1,a)与点B(b,1)在反比例函数y=(x>0)图象上,
∴a=2,b=2,
∴点A(1,2)与点B(2,1),
延长AB交x轴于点C,如图2,
设直线AB的解析式为y=mx+n,
则有,
解得,
∴直线AB的解析式为y=﹣x+1.
∵点C是直线y=﹣x+1与x轴的交点,
∴点C的坐标为(1,0),OC=1,
∵S△PAB=2,
∴S△PAB=S△PAC﹣S△PBC=×PC×2﹣×PC×1=PC=2,
∴PC=2.
∵C(1,0),P(m,0),
∴|m﹣1|=2,
∴m=﹣1或3,
故答案为:﹣1或3.
本题考查的是反比例函数,熟练掌握反比例函数图像上点的特征是解题的关键.
13、1
【解析】
根据比例的性质即可求解.
【详解】
∵,∴x=3y,∴原式==1.
故答案为:1.
本题考查了比例的性质,关键是得出x=3y.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2).
【解析】
(1)运用△BCE≌Rt△CDF(SAS),再利用角的关系求得∠CKD=90°即可解题.
(2)设正方形ABCD的边长为2a,设CH=x,利用勾股定理求出a与x之间的关系即可解决问题.
【详解】
(1)证明:设EC交DF于K.
∵E,F分别是正方形ABCD边AB,BC的中点,
∴CF=BE,
在Rt△BCE和Rt△CDF中,
,
∴△BCE≌Rt△CDF(SAS),
∠BCE=∠CDF,
又∵∠BCE+∠ECD=90°,
∴∠CDF+∠ECD=90°,
∴∠CKD=90°,
∴CE⊥DF.
(2)解:设正方形ABCD的边长为2a.
EB=EG,∠BEC=∠CEG,∠EGC=∠B=90°
∵CD∥AB,
∴∠ECH=∠BEC,∴∠ECH=∠CEH,
∴EH=CH,
∵BE=EG=a,CD=CG=2a,
在Rt△CGH中,设CH=x,
∴x2=(x-a)2+(2a)2,
∴x=a,
∴GH=EH-EG=a-a=a,
∴.
本题考查的是旋转变换、翻折变换、正方形的性质、全等三角形的判定与性质等知识,熟知旋转、翻折不变性是解答此题的关键,学会构建方程解决问题.
15、1
【解析】
依据矩形的性质可知△AOB是等边三角形,所以AO=AB=3,则AC=2AO=1.
【详解】
解:∵在矩形ABCD中,
∴AO=BO=CO=DO.
∵∠AOD=120°,
∴∠AOB=10°.
∴△AOB是等边三角形.
∴AO=AB=3,
∴AC=2AO=1.
本题主要考查了矩形的性质,矩形中对角线相等且互相平分,则其分成的四条线段都相等.
16、20,1
【解析】
首先由菱形ABCD的对角线AC,BD相交于O,点E,F分别是AD,DC的中点,根据直角三角形斜边上的中线等于斜边的一半,可求得AD的长,由三角形中位线定理可求得AC的长,进而可求出菱形的周长,再求出BD的长即可求出菱形的面积.
【详解】
∵菱形ABCD的对角线AC,BD相交于点O,∴AC⊥BD,OA=OC,OB=OD,
∵点E,F分别是AD,DC的中点,∴OE=AD,EF=AC,
∵OE=2.5,EF=3,∴AD=5,AC=6,∴菱形ABCD的周长为:4×5=20;
∵AO=AC=3,AD=5,∴DO==4,∴BD=2DO=8,∴菱形ABCD的面积=AC•BD=1.
本题考查了菱形的性质、三角形中位线的性质、勾股定理以及直角三角形的性质.注意根据题意求得AC与AD的长是解答此题的关键.
17、(1)a=,b=5,c=4;(2)
【解析】
(1)根据非负数的性质得到方程,解方程即可得到结果;
(2)根据三角形的三边关系,勾股定理的逆定理判断即可.
【详解】
(1)∵a,b,c满足|a-|++(c-4)2=1,
∴|a-|=1,=1,(c-4)2=1,
解得a=,b=5,c=4.
(2)∵a=,b=5,c=4,
∴a+b=+5>4.
∴以a,b,c为边能构成三角形.
∵a2+b2=()2+52=32=(4)2=c2,
∴此三角形是直角三角形.
本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.
18、(1);(2),证明见解析;(3) .
【解析】
(1)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
(2)根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出,然后利用SAS即可证出,最后利用对顶角相等和三角形的内角和定理即可求出结论;
(3)设EC和FO交于点G,根据等边三角形的性质可得,,然后根据旋转的性质可得,°,从而得出、∠DCG=45°、∠BEC=30°,然后利用SAS即可证出,从而可求∠FGC=90°,然后根据等腰直角三角形的性质、勾股定理和30°所对的直角边是斜边的一半即可得出结论.
【详解】
解:(1) ∵是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
在和中
∴.
∴.
又,,.
∴.
(2).
证明:如图②,是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
在和中
∴.
∴.
又,,.
∴.
(3)设EC和FO交于点G
∵是等边三角形,
∴,.
∵线段绕点顺时针旋转60°得到线段,
∴,°.
∴,
即.
∴∠DCG=∠ECF-∠DCF=45°
∵
∴∠BEC=180°-∠ABC-∠BCE=30°
在和中
∴.
∴=30°
∴∠FGC=180°-∠F-∠ECF=90°
∴△CGD为等腰直角三角形,CG= DG
∴CG 2+DG2=CD2
即2CG2=62
解得:CG= DG=
在Rt△FGC中,FC=2CG =,FG=
∴DF=FG-DG=-
此题考查的是等边三角形的性质、旋转的性质、全等三角形的判定及性质和直角三角形的性质,掌握等边三角形的性质、旋转的性质、全等三角形的判定及性质、勾股定理和30°所对的直角边是斜边的一半是解决此题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
20、-1
【解析】
先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
【详解】
∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣1.
故答案为:-1.
本题考查了函数值,解题的关键是掌握函数值的计算方法.
21、.
【解析】
要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
22、
【解析】
根式有意义,被开方式要大于等于零.
【详解】
解:∵有意义,
∴2x0,
解得:
故填.
本题考查了根式有意义的条件,属于简单题,熟悉二次根式有意义的条件是解题关键.
23、
【解析】
观察即可知关于的方程的解是函数中y=0时x的值.
【详解】
解:∵直线过点
∴当y=0时x=-3
即的解为x=-3
故答案为:
本题考查了一次函数与一元一次方程的问题,掌握函数图像上的点与方程的关系是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、,3
【解析】
可先对括号内,进行化简约分,对括号外除法化乘法,然后对括号内同分母分式加法进行计算,最后进行约分即可得到化简之后的结果,将a=-2代入化简之后的结果进行计算.
【详解】
原式=
当a=-2,原式=3
本题考查分式的化简求值,对于分式的化简在运算过程中要根据运算法则注意运算顺序,在化简过程中可先分别对分母分子因式分解,再进行约分计算.
25、(1);(2)见解析.
【解析】
根据题意分别求出当时,每平方米的售价应为元,当时,每平方米的售价应为元;
根据购买方案一、二求出实交房款的关系式,然后分情况讨论即可确定那种方案合算.
【详解】
当时,每平方米的售价应为:
元平方米
当时,每平方米的售价应为:
元平方米.
;
第十六层楼房的每平方米的价格为:元平方米,
按照方案一所交房款为:元,
按照方案二所交房款为:元,
当时,即,
解得:,
当时,即,
解得:.
当时,即,
解得:,
当时,方案二合算;当时,方案一合算当时,方案一与方案二一样.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
26、原计划平均每年完成绿化面积万亩.
【解析】
本题的相等关系是:原计划完成绿化时间−实际完成绿化实际=1.设原计划平均每年完成绿化面积x万亩,则原计划完成绿化完成时间年,实际完成绿化完成时间:年,列出分式方程求解
【详解】
解:设原计划平均每年完成绿化面积万亩.
根据题意可列方程:
去分母整理得:
解得:,
经检验:,都是原分式方程的根,因为绿化面积不能为负,所以取.
答:原计划平均每年完成绿化面积万亩.
本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.列分式方程解应用题的检验要分两步:第一步检验它是否是原方程的根,第二步检验它是否符合实际问题.
题号
一
二
三
四
五
总分
得分
批阅人
2024年山东省烟台市福山区一模数学试题: 这是一份2024年山东省烟台市福山区一模数学试题,共21页。试卷主要包含了答题前,务必用0,非选择题必须用用0,某中学开展“读书节活动”等内容,欢迎下载使用。
山东省烟台市福山区福山区尚德中学2023-2024学年九年级下学期期中数学试题(无答案): 这是一份山东省烟台市福山区福山区尚德中学2023-2024学年九年级下学期期中数学试题(无答案),共5页。试卷主要包含了下列二次根式中,下列各式中,化简正确的是,已知,则的平方根为,若,则代数式的值为等内容,欢迎下载使用。
2024年山东省烟台市福山区九年级中考一模数学试题: 这是一份2024年山东省烟台市福山区九年级中考一模数学试题,共18页。试卷主要包含了答题前,务必用0,非选择题必须用0等内容,欢迎下载使用。