2025届山东省青岛市即墨市九年级数学第一学期开学教学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)笔记本每本a元,买3本笔记本共支出y元,在这个问题中:
①a是常量时,y是变量;
②a是变量时,y是常量;
③a是变量时,y也是变量;
④a,y可以都是常量或都是变量.
上述判断正确的有( )
A.1个B.2个C.3个D.4个
2、(4分)若a>b,则下列结论不一定成立的是( )
A.a-1>b-1B.C.D.-2a<-2b
3、(4分)为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则( )
A.18(1+2x)=33B.18(1+x2)=33
C.18(1+x)2=33D.18(1+x)+18(1+x)2=33
4、(4分)如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,与BC相交于点F,过点B作BE⊥AD于点D,交AC延长线于点E,过点C作CH⊥AB于点H,交AF于点G,则下列结论:⑤;正确的有( )个.
A.1B.2C.3D.4
5、(4分)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l 1,l 2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点
C.当乙摩托车到达A地时,甲摩托车距离A地kmD.经过小时两摩托车相遇
6、(4分)在四边形ABCD中,AC⊥BD,点E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是( )
A.矩形B.菱形C.正方形D.无法确定
7、(4分)若成立,则下列不等式成立的是( )
A.B.
C.D.
8、(4分)矩形的边长是,一条对角线的长是,则矩形的面积是( )
A.B.C..D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;
10、(4分)已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,求关于x的不等式ax+b>kx的解是____________.
11、(4分)多项式因式分解后有一个因式为,则的值为_____.
12、(4分)如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.
13、(4分)若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为________.
三、解答题(本大题共5个小题,共48分)
14、(12分)某楼盘2018年2月份以每平方米10000元的均价对外销售,由于炒房客的涌入,房价快速增长,到4月份该楼盘房价涨到了每平方米12100元.5月份开始政府再次出台房地产调控政策,逐步控制了房价的连涨趋势,到6月份该楼盘的房价为每平方米12000元.
(1)求3、4两月房价平均每月增长的百分率;
(2)由于房地产调控政策的出台,购房者开始持币观望,为了加快资金周转,房地产开发商对于一次性付清购房款的客户给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,总价优惠10000元,并送五年物业管理费,物业管理费是每平方米每月1.5元,小颖家在6月份打算购买一套100平方米的该楼盘房子,她家该选择哪种方案更优惠?
15、(8分)如图,直线与x轴、y轴分别交于点A和点B,点C在线段AB上,点D在y轴的负半轴上,C、D两点到x轴的距离均为1.
(1)点C的坐标为 ,点D的坐标为 ;
(1)点P为线段OA上的一动点,当PC+PD最小时,求点P的坐标.
16、(8分)已知,如图,在ABCD中,E、F是对角线AC上的两点,且AE=CF,
求证:DE=BF
17、(10分)计算(+1)(-1)+÷−.
18、(10分)某校八年级在一次广播操比赛中,三个班的各项得分如下表:
(1) 填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是_________;在动作准确方面最有优势的是_________班
(2) 如果服装统一、动作整齐、动作准确三个方面按20%、30%、50%的比例计算各班的得分,请通过计算说明哪个班的得分最高.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若直线经过点和点,则的值是_____.
20、(4分)一次函数y=-4x-5的图象不经过第_____________象限.
21、(4分)如图,是等腰直角三角形内一点,是斜边,将绕点按逆时针方向旋转到的位置.如果,那么的长是____.
22、(4分)如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是_____.
23、(4分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.
(1)求tan∠ABD的值.
(2)当点F落在AC边上时,求t的值.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.
25、(10分)在一张足够大的纸板上截取一个面积为的矩形纸板,如图,再在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒,底面为矩形,如图,设小正方形的边长为厘米.、
(1)若矩形纸板的一个边长为.
①当纸盒的底面积为时,求的值;
②求纸盒的侧面积的最大值;
(2)当,且侧面积与底面积之比为时,求的值.
26、(12分)如图,图1中ΔABC是等边三角形,DE是中位线,F是线段BC延长线上一点,且CF=AE,连接BE,EF.
图1 图2
(1)求证:BE=EF;
(2)若将DE从中位线的位置向上平移,使点D、E分别在线段AB、AC上(点E与点A不重合),其他条件不变,如图2,则(1)题中的结论是否成立?若成立,请证明;若不成立.请说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
由题意得:y=3a,
此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,
故选B.
2、C
【解析】
不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,根据不等式的性质判断即可.
【详解】
A.不等式a>b两边同时减1,a-1>b-1一定成立;
B.不等式a>b两边同时除以3,一定成立;
C.不等式a>b两边同时平方,不一定不成立,可举反例:,但是;
D.不等式a>b两边同时乘以-2,-2a<-2b一定成立.
故选C.
本题考查不等式的性质,熟记不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,是解题的关键.
3、C
【解析】
根据题意可以列出相应的一元二次方程,本题得以解决.
【详解】
由题意可得,
18(1+x)2=33,
故选:C.
本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.
4、D
【解析】
①②正确,只要证明△BCE≌△ACF,△ADB≌△ADE即可解决问题;
③正确,只要证明GB=GA,得到△BDG是等腰直角三角形,即可得到;
④正确,求出∠CGF=67.5°=∠CFG,则CF=CG=CE,然后AE=AC+CE=BC+CG,即可得到结论;
⑤错误,作GM⊥AC于M.利用角平分线的性质定理即可证明;
【详解】
解:∵AD⊥BE,
∴∠FDB=∠FCA=90°,
∵∠BFD=∠AFC,
∴∠DBF=∠FAC,
∵∠BCE=∠ACF=90°,BC=AC,
∴△BCE≌△ACF,
∴EC=CF,AF=BE,故①正确,
∵∠DAB=∠DAE,AD=AD,∠ADB=∠ADE=90°,
∴△ADB≌△ADE,
∴BD=DE,
∴AF=BE=2BD,故②正确,
如图,连接BG,
∵CH⊥AB,AC=AB,
∴BH=AH,∠BHG=∠AHG=90°
∵HG=HG,
∴△AGH≌△BGH,
∴BG=AG,∠GAH=∠GBH=22.5°,
∴∠DGB=∠GAH+∠GBH=45°,
∴△BDG是等腰直角三角形,
∴BD=DG=DE;故③正确;
由△ACH是等腰直角三角形,
∴∠ACG=45°,
∴∠CGF=45°+22.5°=67.5°,
∵∠CFG=∠DFB=90°-22.5°=67.5°,
∴∠CGF=∠CFG,
∴CG=CF,
∵AB=AE,BC=AC,CE=CF=CG,
又∵AE=AC+CE,
∴AB=BC+CG,故④正确;
作GM⊥AC于M,
由角平分线性质,GH=GM,
∴△AGH≌△AGM(HL),
∴△AGH的面积与△AGM的面积相等,
故⑤错误;
综合上述,正确的结论有:①②③④;
故选择:D.
本题考查全等三角形的判定和性质、直角三角形斜边中线的性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.
5、C
【解析】
根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B地判定B正确;设两车相遇的时间为t,根据相遇问题列出方程求解即可;根据乙摩托车到达A地时,甲摩托车行驶了0.5小时,计算即可得解.
【详解】
A. 由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小,所以,乙摩托车的速度较快正确,故A项正确;
B. 因为甲摩托车行驶完全程需要0.6小时,所以经过0.3小时甲摩托车行驶到A,B两地的中点正确,故B项正确;
C. 当乙摩托车到达A地时,甲摩托车距离A地: km正确,故C项错误;
D. 设两车相遇的时间为t,根据题意得,,t= ,故D选正确.
故选:C.
本题考查了一次函数的实际应用.
6、A
【解析】
首先利用三角形的中位线定理证得四边形EFGH为平行四边形,然后利用有一个角是直角的平行四边形是矩形判定即可.
【详解】
证明:如图,
∵点E、F、G、H分别是边AB、BC、CD、DA的中点,
∴EF=AC,GH=AC,EF//AC
∴EF=GH,同理EH=FG,GF//BD
∴四边形EFGH是平行四边形;
又∵对角线AC、BD互相垂直,
∴EF与FG垂直.
∴四边形EFGH是矩形.
故选A.
本题考查了中点四边形的知识,解题的关键是灵活运用三角形的中位线定理,平行四边形的判断及矩形的判断进行证明,是一道综合题.
7、D
【解析】
根据不等式的性质解答即可.
【详解】
A. ∵,∴,故不正确;
B. ∵,∴,∴ ,故不正确;
C. ∵,∴ ,∴,故不正确;
D. ∵,∴,正确;
故选D.
本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变
8、C
【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.
【详解】
由题意及勾股定理得矩形另一条边为==4
所以矩形的面积=44=16.
故答案选C.
本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(-1,2)
【解析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
【详解】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.
故Q坐标为(-1,2).
故答案为:(-1,2).
此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.
10、x<-1.
【解析】
试题解析:∵由函数图象可知,当x<-1时一次函数y=ax+b在一次函数y=kx图象的上方,
∴关于x的不等式ax+b>kx的解是x<-1.
考点:一次函数与一元一次不等式.
11、5
【解析】
根据十字相乘的进行因式分解即可得出答案.
【详解】
根据题意可得:
∴
∴k=5
故答案为5.
本题考查的是因式分解,难度适中,需要熟练掌握因式分解的步骤.
12、1
【解析】
证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.
【详解】
解:在△ABQ和△EBQ中,
,
∴△ABQ≌△EBQ(ASA),
∴BE=AB=5,AQ=QE,
同理可求CD=AC=7,AP=PD,
∴DE=CD-CE=CD-(BC-BE)=2,
∵AP=PD,AQ=QE,
∴PQ=DE=1,
故答案为:1.
本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
13、1:1.
【解析】
根据相似三角形的周长的比等于相似比得出.
【详解】
解:∵△ABC∽△DEF,△ABC与△DEF的相似比为1:1,
∴△ABC与△DEF的周长比为1:1.
故答案为:1:1.
本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.
三、解答题(本大题共5个小题,共48分)
14、(1)3、4两月房价平均每月增长的百分率为10%;(2)选择第一种方案更优惠.
【解析】
(1)设3、4两月房价平均每月增长的百分率为x,根据2月份及4月份该楼盘房价,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)根据两种优惠方案,分别求出选择两种方案优惠总额,比较后即可得出结论.
【详解】
解:(1)设3、4两月房价平均每月增长的百分率为x,
根据题意得:10000(1+x)2=12100,
解得:x1=0.1=10%,x2=﹣2.1(舍去).
答:3、4两月房价平均每月增长的百分率为10%.
(2)选择第一种优惠总额=100×12000×(1﹣0.98)=24000(元),
选择第二种优惠总额=100×1.5×12×5+10000=19000(元).
∵24000>19000,
∴选择第一种方案更优惠.
本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)分别求出选择两种方案优惠总额.
15、(1)(-3,1);(0,-1)
(1)P(,0)
【解析】
(1)根据直线与C、D两点到x轴的距离均为1即可求出C,D的坐标;(1)连接CD,求出直线CD与x轴的交点即为P点.
【详解】
(1)令y=1,解得x=-3,∴点C的坐标为(-3,1)
令y=-1,解得x=0,∴点D的坐标为(0,-1)
(1)如图,连接CD,求出直线CD与x轴的交点即为P点.
设直线CD的解析式为y=kx+b,
把(-3,1),(0,1)代入得
解得
∴y=x-1
令y=0,解得x=
∴P(,0)
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
16、见解析
【解析】
要证明DE=BF成立,只需要根据条件证△AED≌△CFB即可.
【详解】
证明:∵四边形ABCD是平行四边形.
∴AD∥BC,且AD=BC
∴∠DAE=∠BCF
∴在△DAE和△BCF中
∴△DAE≌△BCF(SAS)
∴DE=BF.
考点:1.平行四边形的性质;2.全等三角形的判定与性质.
17、1+
【解析】
根据实数的运算法则求解.
【详解】
解:原式=2-1+-
=1+
本题考查了实数的运算,属于简单题,熟悉实数运算法则是解题关键.
18、(1)89;八(1);(2)八(1)班得分最高.
【解析】
(1)用算术平均数的计算方法求得三个班的服装统一的平均数,找到动作准确的分数最高即可;
(2)利用加权平均数分别计算三个班的得分后即可得解.
【详解】
解:(1)服装统一方面的平均分为:=89分;
动作准确方面最有优势的是八(1)班;
故答案为:89;八(1);
(2)∵八(1)班的平均分为:=84.7分;
八(2)班的平均分为:=82.8分;
八(3)班的平均分为:=83.9分;
∴得分最高的是八(1)班.
本题考查了平均数和加权平均数的计算.要注意,当所给数据有单位时,所求得的平均数与原数据的单位相同,不要漏单位.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、4
【解析】
分别把和代入中即可求出k和b的值,从而可以得出k-b的值.
【详解】
解:∵直线经过点和点,
∴将代入中得-2=k-3,解得k=1,
将代入中得b=-3,
∴k-b=1-(-3)=4,
故答案为4.
本题考查一次函数的应用,解题的关键是能根据函数图象上的点与函数的解析式的关系列出关于k和b的一元一次方程,并分别求出k和b的值.
20、一
【解析】
根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.
【详解】
∵一次函数y=-4x-5,k=-4<0,b=-5<0,
∴该函数经过第二、三、四象限,不经过第一象限,
故答案为:一.
本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.
21、
【解析】
证明△ADD′是等腰直角三角形即可解决问题.
【详解】
解:由旋转可知:△ABD≌△ACD′,
∴∠BAD=∠CAD′,AD=AD′=2,
∴∠BAC=∠DAD′=90°,即△ADD′是等腰直角三角形,
∴DD′=,
故答案为:.
本题考查旋转的性质,等腰直角三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
22、1
【解析】
试题分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.
【详解】
解:过D作DE⊥BC于E,
∵∠A=90°,
∴DA⊥AB,
∵BD平分∠ABC,
∴AD=DE=3,
∴△BDC的面积是:×DE×BC=×10×3=1,
故答案为1.
考点:角平分线的性质.
23、①②④.
【解析】
利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到,而,所以,所以△DEF与△ABG不相似,于是可对③进行判断.
【详解】
解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,
将△ABG沿BG折叠,点A恰落在线段BF上的点H处,
∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,
∴∠EBG=∠EBF+∠FBG=∠CBF+∠ABF=∠ABC=45°,所以①正确;
在Rt△ABF中,AF===8,
∴DF=AD﹣AF=10﹣8=2,
设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,
在Rt△GFH中,
∵GH2+HF2=GF2,
∴x2+42=(8﹣x)2,解得x=3,
∴GF=5,
∴AG+DF=FG=5,所以④正确;
∵△BCE沿BE折叠,点C恰落在边AD上的点F处,
∴∠BFE=∠C=90°,
∴∠EFD+∠AFB=90°,
而∠AFB+∠ABF=90°,
∴∠ABF=∠EFD,
∴△ABF∽△DFE,
∴=,
∴===,
而==2,
∴≠,
∴△DEF与△ABG不相似;所以③错误.
∵S△ABG=×6×3=9,S△GHF=×3×4=6,
∴S△ABG=S△FGH,所以②正确.
故答案是:①②④.
本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.
二、解答题(本大题共3个小题,共30分)
24、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.
【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.
(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.
(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E点在三角形内部,F点在外部,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,
【详解】
解:(1)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1
根据勾股定理得BC=10
过点D作DH⊥BC于点H
∵△ABD≌△HBD,
∴BH=AH=6,DH=AD,
∴CH=4,
∵△ABC∽△HDC,
∴,
∴,
∴DH=AD=3,
∴tan∠ABD==,
(2)由(1)可知BP=2PE,依题意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,
当点F落在AC边上时,FG=CG,
即,
,
(3)①当时,F点在三角形内部或边上,正方形PEFG在△BDC内部,
此时重叠部分图形的面积为正方形面积:,
②当时,如图:E点在三角形内部,F点在外部,
∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM= ,
此时重叠部分图形的面积S=S正方形-S△FMN
,
③当时,重叠部分面积为梯形MPGN面积,如图:
∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,
∴,
综上所述:当时,;当时,;当时,.
本题考查三角形综合题,涉及了矩形的性质、勾股定理、相似三角形的性质和判定、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.
25、(1)①12;②当时,;(2)1
【解析】
(1)①根据题意列方程求解即可;
②一边长为90cm,则另一边长为40cm,列出侧面积的函数解析式,配方可得最值;
(2)由EH:EF=7:2,设EF=2m、EH=7m,根据侧面积与底面积之比为9:7建立方程,可得m=x,由矩形纸板面积得出x的值.
【详解】
(1)①矩形纸板的一边长为,
矩形纸板的另一边长为,
(舍去)
②
,
当时,.
(2)设EF=2m,则EH=7m,
则侧面积为2(7mx+2mx)=18mx,底面积为7m•2m=14m2,
由题意,得18mx:14m2=9:7,
∴m=x.
则AD=7x+2x=9x,AB=2x+2x=4x
由4x•9x=3600,且x>0,
∴x=1.
本题主要考查二次函数的应用,根据矩形的面积公式列出面积的函数表达式或方程是解题的关键.
26、 (1)证明见解析;(2)结论仍然成立;(3)
【解析】
(1)利用等边三角形的性质以及三线合一证明得出结论;
(2)由中位线的性质、平行线的性质,等边三角形的性质以及三角形全等的判定与性质证明
【详解】
(1)证明:∵ΔABC是等边三角形,
∴∠ABC=∠ACB=,AB=BC=AC
∵DE是中位线,
∴E是AC的中点,
∴BE平分∠ABC,AE=EC
∴∠EBC=∠ABC=
∵AE=CF,
∴CE=CF,
∴∠CEF=∠F
∵∠CEF+∠F=∠ACB=,
∴∠F=,
∴∠EBC=∠F,
∴BE=EF
(2)结论仍然成立.
∵DE是由中位线平移所得;
∴DE//BC,
∴∠ADE=∠ABC=,∠AED=∠ACB=,
∴ΔADE是等边三角形,
∴DE=AD=AE,
∵AB=AC,
∴BD=CE,
∵AE=CF,
∴DE=CF
∵∠BDE=-∠ADE=,∠FCE=-∠ACB=,
∴∠FCE=∠EDB,
∴ΔBDE≌ΔECF,
∴BE=EF
此题考查等边三角形的判定与性质,三角形中位线定理和全等三角形的判定与性质,解题关键在于利用三线合一证明得出结论
题号
一
二
三
四
五
总分
得分
批阅人
服装统一
动作整齐
动作准确
八(1)班
80
84
87
八(2)班
97
78
80
八(3)班
90
78
85
2025届山东省青岛市名校数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2025届山东省青岛市名校数学九年级第一学期开学教学质量检测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年山东省青岛市即墨市七级中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2024-2025学年山东省青岛市即墨市七级中学数学九年级第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省青岛市即墨市2023-2024学年九年级数学第一学期期末检测模拟试题含答案: 这是一份山东省青岛市即墨市2023-2024学年九年级数学第一学期期末检测模拟试题含答案,共8页。试卷主要包含了图中三视图所对应的直观图是,式子有意义的的取值范围,已知反比例函数y=等内容,欢迎下载使用。