![2025届辽宁省沈阳市皇姑区第三十三中学数学九年级第一学期开学复习检测模拟试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16239774/0-1728628823958/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届辽宁省沈阳市皇姑区第三十三中学数学九年级第一学期开学复习检测模拟试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16239774/0-1728628824085/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届辽宁省沈阳市皇姑区第三十三中学数学九年级第一学期开学复习检测模拟试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16239774/0-1728628824108/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届辽宁省沈阳市皇姑区第三十三中学数学九年级第一学期开学复习检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列事件是确定事件的是( )
A.射击运动员只射击1次,就命中靶心
B.打开电视,正在播放新闻
C.任意一个三角形,它的内角和等于180°
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6
2、(4分)有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )
A.B.C.D.
3、(4分)已知不等式的解集是,下列各图中有可能是函数的图象的是( )
A.B.
C.D.
4、(4分)如图,△DEF是由△ABC经过平移得到的,若∠C=80°,∠A=33°,则∠EDF=( )
A.33°B.80°C.57°D.67°
5、(4分)下列对二次函数y=x2﹣x的图象的描述,正确的是( )
A.开口向下B.对称轴是y轴
C.经过原点D.在对称轴右侧部分是下降的
6、(4分)下列计算中,正确的是( )
A.+=B.×=3
C.÷=3D.=﹣3
7、(4分)如图,已知二次函数,它与轴交于、,且、位于原点两侧,与的正半轴交于,顶点在轴右侧的直线:上,则下列说法:① ② ③ ④其中正确的结论有( )
A.①②B.②③C.①②③D.①②③④
8、(4分)下列各式中,与是同类二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD:DC=2:1,BC=7.8cm,则D到AB的距离为____cm.
10、(4分)如图,在中,,为的中线,过点作于点,过点作的平行线,交的延长线于点,在的延长线上截取,连接、.若,,则________.
11、(4分)数据101,98,102,100,99的方差是______.
12、(4分)若,则a与b的大小关系为a_____b(填“>”、“<”或“=”)
13、(4分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集是_____________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.
(1)请找出图中一对相似三角形,并证明;
(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.
15、(8分)有这样一个问题:探究函数的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整:
(1)下表是与的几组对应值,则 .
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;
(3)当时,随的增大而 ;当时,的最小值为 .
16、(8分)如图1,E为正方形ABCD的边BC上一点,F为边BA延长线上一点,且CE=AF.
(1)求证:DE⊥DF;
(2)如图2,若点G为边AB上一点,且∠BGE=2∠BFE,△BGE的周长为16,求四边形DEBF的面积;
(3)如图3,在(2)的条件下,DG与EF交于点H,连接CH且CH=5,求AG的长.
17、(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=1.
(1)求证:方程有两个不相等的实数根;
(2)若方程有一个根是5,求k的值.
18、(10分)在中,,是的中点,是的中点,过点作交的延长线于点,连接.
(1)求证:.
(2)求证:四边形是菱形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值为零,则x的值为_____.
20、(4分)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于_____.
21、(4分)二次函数的函数值自变量之间的部分对应值如下表:
此函数图象的对称轴为_____
22、(4分)已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.
23、(4分)若一元二次方程(为常数)有两个相等的实数根,则______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.
求点D的坐标;
求的面积.
25、(10分)如图,有一块凹四边形土地ABCD,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m,求这块四边形土地的面积.
26、(12分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.
已知.
(1)观察发现
如图①,若点是和的角平分线的交点,过点作分别交、于、,填空: 与、的数量关系是________________________________________.
(2)猜想论证
如图②,若点是外角和的角平分线的交点,其他条件不变,填: 与、的数量关系是_____________________________________.
(3)类比探究
如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
利用随机事件以及确定事件的定义分析得出答案.
【详解】
A.射击运动员只射击1次,就命中靶心,是随机事件. 故选项错误;
B.打开电视,正在播放新闻,是随机事件.故选项错误;
C.任意一个三角形,它的内角和等于180°,是必然事件.故选项正确;
D.抛一枚质地均匀的正方体骰子,朝上一面的点数为6,是随机事件.故选项错误.
故选C.
本题考查了随机事件和确定事件,正确把握相关事件的确定方法是解题的关键.
2、C
【解析】
试题分析:出现向上一面的数字有6种,其中是偶数的有3种,故概率为.
考点:概率的计算
3、A
【解析】
不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.
【详解】
解:A、不等式mx+n>0的解集是x>-2,故选项正确;
B、不等式mx+n>0的解集是x<-2,故选项错误;
C、不等式mx+n>0的解集是x>2,故选项错误;
D、不等式mx+n>0的解集是x<2,故选项错误.
故选:A.
本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.
4、A
【解析】
根据平移的性质,得对应角∠EDF=∠A,即可得∠EDF的度数.
【详解】
解:在△ABC中,∠A=33°,
∴由平移中对应角相等,得∠EDF=∠A=33°.
故选:A.
此题主要考查了平移的性质,解题时,注意运用平移中的对应角相等.
5、C
【解析】
【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.
【详解】A、∵a=1>0,∴抛物线开口向上,选项A不正确;
B、∵﹣,∴抛物线的对称轴为直线x=,选项B不正确;
C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;
D、∵a>0,抛物线的对称轴为直线x=,
∴当x>时,y随x值的增大而增大,选项D不正确,
故选C.
【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0),对称轴直线x=-,当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.
6、C
【解析】
根据二次根式的性质和乘除法运算法则,对每个选项进行判断,即可得到答案.
【详解】
解:A、与不是同类二次根式,不能合并,故A错误;
B、,故B错误;
C、,故C正确;
D、,故D错误;
故选择:C.
本题考查了二次根式的性质,二次根式的乘除运算,以及同类二次根式的定义,解题的关键是熟练掌握二次根式的性质,以及熟记乘除法运算的运算法则.
7、D
【解析】
由根与系数的关系,结合顶点位置和坐标轴位置,进行分析即可得到答案.
【详解】
解:设函数图像与x轴交点的横坐标分别为x1,x2
则根据根于系数的关系得到:x1+x2=b, x1x2=c
∵A,B两点位于y轴两侧,且对称轴在y轴的右侧,则b>0
函数图像交y轴于C点,则c<0,
∴bc<0,即①正确;
又∵顶点坐标为( ),即()
∴=4,即
又∵ =,即
∴AB=4即③正确;
又∵A,B两点位于y轴两侧,且对称轴在y轴的右侧
∴<2,即b<4
∴0<b<4,故②正确;
∵顶点的纵坐标为4,
∴△ABD的高为4
∴△ABD的面积= ,故④正确;
所以答案为D.
本题考查了二次函数与一元二次方程的联系,熟练掌握二次函数和一元二次方程的性质是解答本题的关键.
8、B
【解析】
先化简二次根式,再根据同类二次根式的定义判定即可.
【详解】
解:A、与的被开方数不同,不是同类二次根式,故本选项错误.
B、=2,与的被开方数相同,是同类二次根式,故本选项正确.
C、与的被开方数不同,不是同类二次根式,故本选项错误.
D、=3 ,与的被开方数不同,不是同类二次根式,故本选项错误.
故选:B.
本题考查同类二次根式,解题的关键是二次根式的化简.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2.1
【解析】
试题分析:先要过D作出垂线段DE,根据角平分线的性质求出CD=DE,再根据已知即可求得D到AB的距离的大小.
解:过点D作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC
∴CD=DE
又BD:DC=2:1,BC=7.8cm
∴DC=7.8÷(2+1)=7.8÷3=2.1cm.
∴DE=DC=2.1cm.
故填2.1.
点评:此题主要考查角平分线的性质;根据角平分线上的点到角的两边的距离相等进行解答,各角线段的比求出线段长是经常使用的方法,比较重要,要注意掌握.
10、5
【解析】
首先可判断四边形BGFD是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD,则可判断四边形BGFD是菱形,设GF=x,则AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.
【详解】
解:∵,,
∴四边形是平行四边形,
∵,
∴,
又∵点是中点,
∴,
∴四边形是菱形,
设,则,,
∵在中,,
∴,即,
解得:,
即.
故答案是:5.
本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.
11、1
【解析】
先求平均数,再根据方差公式求方差.
【详解】
平均数 .x=(98+99+100+101+101)=100,
方差s1= [(98-100)1+(99-100)1+(100-100)1+(101-100)1+(101-100)1]=1.
故答案为1
本题考核知识点:方差. 解题关键点:熟记方差公式.
12、=
【解析】
先对进行分母有理化,然后与a比较即可.
【详解】
解:,即a=b,所以答案为=.
本题考查含二次根式的式子大小比较,关键是对进行分母有理化.
13、x<
【解析】
先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.
【详解】
解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),
∴3=2m,
解得m,
∴点A的坐标是(,3),
∴不等式2x<ax+4的解集为x<.
此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5
【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;
(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.
【详解】
(1)△ADQ∽△EPD,证明如下:
∵PE⊥DQ,
∴∠DEP=∠A=90,
∵∠ADC=90,
∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,
∴∠ADQ=∠DPE,
∴△ADQ∽△EPD;
(2)∵AB=4,点Q为AB的中点,
∴AQ=BQ=2,
∴DQ=,
∵∠PEQ=∠A=90,
∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,
①当△ADQ∽△EPQ时,,
设EQ=x,则EP=2x,则DE=2−x,
由(1)知△ADQ∽△EPD,
∴,
∴,
∴x=
∴DP==5;
②当△ADQ∽△EQP时,设EQ=2a,则EP=a,
同理可得,
∴a=,
DP=.
综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.
本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.
15、(1);(2)详见解析;(3)增大;
【解析】
(1)把x=代入函数解析式即可得到结论;
(2)根据描出的点,画出该函数的图象即可;
(3)根据函数图象即可得到结论.
【详解】
解:(1)把x=代入y=x3得,y=;
故答案为:;
(2)如图所示:
(3)根据图象得,当x<0时,y随x的增大而增大;
当时,的最小值为-1.
故答案为:增大;.
本题考查了函数的图象与性质,正确的画出函数的图形是解题的关键.
16、(1)见解析;(2)64;(3)
【解析】
(1)证明,根据全等三角形的性质得到,根据垂直的定义证明;
(2)根据三角形的外角的性质、等腰三角形的判定定理得到,根据三角形的周长公式求出,根据正方形的面积公式计算;
(3)作交的延长线于点,证明,得到,,根据勾股定理列方程求出,计算即可.
【详解】
(1)证明:四边形是正方形,
,,
在和中,
,
,
,
,即,
;
(2)解:,,
,
,
的周长为16
,
,
,
;
(3)过点作交的延长线于点,
,,
垂直平分,
,
,,
,即,
在四边形中,,,
,
在和中,
,
,,
在中,,
,
,,
在中,设,则,
由勾股定理得,
解得:,
.
本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.
17、(1)证明见解析;(2)k=4或k=2.
【解析】
(1)根据根的判别式为1,得出方程有两个不相等的实数根;(2)将x=2代入方程得出关于k的一元二次方程,从而得出k的值.
【详解】
(1)∵△=
=
=,
∴方程有两个不相等的实数根;
(2)∵方程有一个根为2,
∴,
,
∴,.
本题考查了一元二次方程根的判别式,因式分解法解一元二次方程,熟练掌握相关知识是解题的关键.
18、(1)见解析;(2) 见解析
【解析】
(1)根据已知条件易证,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得,利用一组对边平行且相等的四边形为平行四边形,证得四边形是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得,由一组邻边相等的平行四边形为菱形即可判定四边形是菱形.
【详解】
(1)证明:如图,,
,
是直角三角形,是边上的中线,是的中点,
,,
在和中,
,
;
.
(2)由(1)知,
,
,
,
四边形是平行四边形,
,是的中点,
,
四边形是菱形.
本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.
【详解】
解:,
则x﹣1=0,x+1≠0,
解得x=1.
故若分式的值为零,则x的值为1.
故答案为:1.
本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.
20、1.
【解析】
利用(1,4),(2,7)两点求出所在的直线解析式,再将点(a,10)代入解析式即可.
【详解】
设经过(1,4),(2,7)两点的直线解析式为y=kx+b,
∴,
解得,
∴y=1x+1,
将点(a,10)代入解析式,则a=1;
故答案为:1.
此题考查待定系数法求一次函数的解析式,正确理解题意,利用一次函数解析式确定点的横坐标a的值.
21、x=2.
【解析】
根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.
【详解】
∵x=0、x=4时的函数值都是−1,
∴此函数图象的对称轴为直线x==2,
即直线x=2.
故答案为:直线x=2.
此题考查二次函数的性质,解题关键在于利用其对称性求解.
22、1.
【解析】
将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.
【详解】
∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.
本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.
23、±2
【解析】
根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.
【详解】
∵方程有两个相等的实数根,
∴△=b−4×1=b−4=0,
解得:b=±2.
故答案为:±2
此题考查根的判别式,解题关键在于掌握判别式
二、解答题(本大题共3个小题,共30分)
24、(1);(2).
【解析】
利用直线的解析式令,求出x的值即可得到点D的坐标;
根据点A、B的坐标,利用待定系数法求出直线的解析式,得到点A的坐标,再联立直线,的解析式,求出点C的坐标,然后利用三角形的面积公式列式进行计算即可得解.
【详解】
直线的解析式为,且与x轴交于点D,
令,得,
;
设直线的解析式为,
,,
,
解得,
直线的解析式为.
由,
解得,
.
,
.
本题考查了两直线相交的问题,直线与坐标轴的交点的求解,待定系数法求一次函数解析式,以及一次函数图象与二元一次方程组的关系,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
25、这块土地的面积为14m1
【解析】
试题分析: 连接AC,先利用勾股定理求AC,再利用勾股定理逆定理证△ACB为直角三角形,根据四边形ABCD的面积=△ABC面积-△ACD面积即可计算.
试题解析:
连接AC,
∵AD=4m,CD=3m,∠ADC=90°,
∴AC=5m,
△ACD的面积=×3×4=6(m²),
在△ABC中,
∵AC=5m,BC=11m,AB=13m,
∴AC²+BC²=AB²,
∴△ABC为直角三角形,且∠ACB=90°,
∴直角△ABC的面积=×11×5=30(m²),
∴四边形ABCD的面积=30−6=14(m²).
∴该花圃的面积是14m1.
26、(1);(2);(3)不成立, ,证明详见解析.
【解析】
(1)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(2)根据平行线的性质与角平分线的定义得出 ∠EDB=∠EBD , ∠FCD=∠FDC ,从而得出 EF 与 BE 、 CF 的数量关系;
(3)根据平行线的性质与角平分线的定义得出 EF 与 BE 、 CF 的数量关系.
【详解】
(1)EF=BE+CF.
∵ 点 D 是 ∠ABC 和 ∠ACB 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(2)EF=BE+CF.
∵D 点是外角 ∠CBE 和 ∠BCF 的角平分线的交点,
∴∠EBD=∠DBC , ∠FCD=∠DCB .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCB .
∴ ∠EDB=∠EBD , ∠FCD=∠FDC .
∴EB=ED , DF=CF .
∴EF=BE+CF .
故本题答案为: EF=BE+CF .
(3)不成立; EF=BE−CF ,证明详见解析.
∵ 点 D 是 ∠ABC 和外角 ∠ACM 的角平分线的交点,
∴∠EBD=∠DBC , ∠ACD=∠DCM .
∵EF∥BC ,
∴∠EDB=∠DBC , ∠FDC=∠DCM .
∴∠EBD=∠EDB , ∠FDC=∠FCD .
∴BE=ED , FD=FC .
∵EF=ED−FD ,
∴EF=BE−CF .
本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.
题号
一
二
三
四
五
总分
得分
批阅人
…
…
…
…
…
0
1
4
…
…
4
…
2025届辽宁省沈阳市五校九年级数学第一学期开学复习检测模拟试题【含答案】: 这是一份2025届辽宁省沈阳市五校九年级数学第一学期开学复习检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省沈阳市第三十三中学九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份2025届辽宁省沈阳市第三十三中学九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2025届辽宁省皇姑区数学九年级第一学期开学复习检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。