2025届锦州市重点中学数学九上开学达标测试试题【含答案】
展开
这是一份2025届锦州市重点中学数学九上开学达标测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,ABCD中,点O为对角线AC、BD的交点,下列结论错误的是( )
A.AC=BDB.AB//DC
C.BO=DOD.∠ABC=∠CDA
2、(4分)不等式2x-1≤5的解集在数轴上表示为( )
A.B.C.D.
3、(4分)若一个多边形的每一个外角都是40°,则这个多边形是( )
A.七边形B.八边形C.九边形D.十边形
4、(4分)一元二次方程x2﹣8x+20=0的根的情况是( )
A.没有实数根 B.有两个相等的实数根
C.只有一个实数根 D.有两个不相等的实数根
5、(4分)要使分式有意义,则的取值范围是( )
A.B.C.D.
6、(4分)如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是( )
A.①③B.①④C.②③D.②④
7、(4分)故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是( )
A.①②B.①③C.①④D.②③
8、(4分)小颖从家出发,走了20分钟,到一个离家1000米的图书室,看了40分钟的书后,用15分钟返回到家,图(3)中表示小颖离家时间x与距离y之间的关系正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.
10、(4分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)
11、(4分)若方程有增根,则m的值为___________;
12、(4分)比较大小:__________.(用不等号连接)
13、(4分)如图,在平行四边形ABCD中,AC和BD交于点O,过点O的直线分别与AB,DC交于点E,F,若△AOD的面积为3,则四边形BCFE的面积等于_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)阅读理解:
定义:有三个内角相等的四边形叫“和谐四边形”.
(1)在“和谐四边形”中,若,则 ;
(2)如图,折叠平行四边形纸片,使顶点,分别落在边,上的点,处,折痕分别为,.
求证:四边形是“和谐四边形”.
15、(8分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
16、(8分)如图,在中,,,的垂直平分线分别交和于点、.求证:.
17、(10分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
18、(10分)为了了解某校七年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.
(1)本次抽测的男生有 人;
(2)请你将图1的统计图补充完整;
(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知,函数y=(k-1)x+k2-1,当k________时,它是一次函数.
20、(4分)如图,矩形全等于矩形,点在上.连接,点为的中点.若,,则的长为__________.
21、(4分)直角中,,、、分别为、、的中点,已知,则________.
22、(4分)在Rt△ABC中,∠C=90°,若a=6,b=8,则c=________.
23、(4分)若分式的值为零,则x的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知点P(2m+4,m-1),请分别根据下列条件,求出点P的坐标.
(1)点P在x轴上;
(2)点P的纵坐标比横坐标大3;
(3)点P在过点A(2,-4)且与y轴平行的直线上.
25、(10分),若方程无解,求m的值
26、(12分)阅读材料:在实数范围内,当且时 ,我们由非负数的性质知道,所以, 即:,当且仅当=时,等号成立,这就是数学上有名的“均值不等式”,若与的积为定值. 则有最小值:请问: 若 , 则当取何值时,代数式取最小值? 最小值是多少?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
根据平行四边形的性质即可判断.平行四边形的对边平行且相等,对角相等,对角线互相平分。
【详解】
解:
∵四边形ABCD是平行四边形,
∴AB∥CD,OB=OD,∠ABC=∠ADC,
∴B、C、D正确,A错误。
故选:A.
本题考查平行四边形的性质、记住平行四边形的性质是解题的关键,属于中考基础题.
2、A
【解析】
先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.
【详解】
2x-1≤5,
移项,得 2x≤5+1,
合并同类项,得 2x≤6,
系数化为1,得 x≤3,
在数轴上表示为:
故选A.
本题考查了在数轴上表示不等式的解集,熟练掌握表示方法是解题的关键.不等式的解集在数轴上表示的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.
3、C
【解析】
根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.
【详解】
360÷40=9,即这个多边形的边数是9,
故选C.
本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.
4、A
【解析】
先计算出△,然后根据判别式的意义求解.
【详解】
∵△=(-8)2-4×20×1=-16<0,
∴方程没有实数根.
故选A.
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
5、C
【解析】
根据分式有意义的条件,即可解答.
【详解】
分式有意义的条件是:分母不等于零,a-4≠0,
∴
所以选C.
此题考查分式有意义的条件,解题关键在于掌握其定义.
6、D
【解析】
根据可判定①错误;根据AB=AD,BC=CD,可推出AC是线段BD的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF,设点F到直线AB的距离为h,作出图形,求出h的值,可知④正确。可得正确选项。
【详解】
解:∵在四边形ABCD中,
∴四边形不可能是菱形,故①错误;
∵在四边形ABCD中,AB=AD=5,BC=CD,
∴AC是线段BD的垂直平分线,
∴四边形的面积,故②正确;
由已知得顺次连接四边形的四边中点得到的四边形是矩形,不是正方形,故③错误;
将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,
连接AF,设点F到直线AB的距离为h,
由折叠可得,四边形ABED是菱形,AB=BE=5=AD=DE,BO=DO=4,
∴AO=EO=3,
∵BF⊥CD,BF∥AD,
∵S△ABF=S梯形ABFD-S△ADF,
解得,故④正确
故选:D
本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.
7、C
【解析】
根据各结论所给两个点的坐标得出原点的位置及单位长度从而得到答案.
【详解】
①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5),正确;
②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,2.5),错误;
③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,2),错误;
④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6),正确,
故选:C.
此题考查平面直角坐标系中用点坐标确定具体位置,由给定的点坐标确定原点及单位长度是解题的关键.
8、A
【解析】
在0—20分钟,小颖从家出发到图书室的过程,随着时间x的改变,距离y越来越大;20—60分钟,小颖在看书,所以随着时间x的改变,距离y不变;60—75分钟,小颖返回家,所以随着时间x的改变,距离y变小.所以答案选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.1,2,2.1.
【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.
详解:1,3,1,1,2,a的众数是a,
∴a=1或2或3或1,
将数据从小到大排列分别为:1,1,1,2,3,1,
1,1,2,2,3,1,
1,1,2,3,3,1,
1,1,2,3,1,1.
故中位数分别为:1.1,2,2.1.
故答案为:1.1,2,2.1.
点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.
10、AC=BC
【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.
11、-4或6
【解析】
方程两边同乘最简公分母(x-2)(x+2),化为整式方程,然后根据方程有增根,求得x的值,代入整式方程即可求得答案.
【详解】
方程两边同乘(x-2)(x+2),
得2(x+2)+mx=3(x-2)
∵原方程有增根,
∴最简公分母(x+2)(x-2)=0,
解得x=-2或2,
当x=-2时,m=6,
当x=2时,m=-4,
故答案为:-4或6.
本题考查了分式方程增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.
12、
相关试卷
这是一份2025届揭阳市重点中学数学九上开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届菏泽市重点中学数学九上开学达标检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届赣州市重点中学数学九上开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。