2025届江西省上饶县联考数学九上开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在中,下列结论错误的是()
A.B.C.D.
2、(4分)在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是( )
A.5B.7C.9D.11
3、(4分)的值等于
A.3B.C.D.
4、(4分)八年级(6)班一同学感冒发烧住院洽疗,护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是( )
A.列表法B.图象法
C.解析式法D.以上三种方法均可
5、(4分)下列图形既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
6、(4分)某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )
A.甲B.乙丙C.甲乙D.甲丙
7、(4分)要使式子有意义,则x的值可以是( )
A.2B.0C.1D.9
8、(4分)已知,,是一次函数图象上不同的两个点,若,则的取值范围是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,点P在第二象限内,且点P在反比例函数图象上,PA⊥x轴于点A,若S△PAO的面积为3,则k的值为 .
10、(4分)若点位于第二象限,则x的取值范围是______.
11、(4分)计算:(﹣)2=_____.
12、(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
13、(4分)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是 分.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知向量,(如图),请用向量的加法的平行四边形法则作向量(不写作法,画出图形)
15、(8分)化简:.
16、(8分)已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(1,0),点B的坐标为(1,8) .
(1)直接写出点C的坐标为:C( ____ ,_____);
(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q为(5,n),
①求m及n的值;
②若动点P从A点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,△APQ的面积为S,当t取何值时,S=1.
17、(10分)求不等式组的解集,并把解集在数轴上表示出来
18、(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.
(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为 ,EG与CG的位置关系为 ,请证明你的结论.
(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.
(3)在图2中,若BC=4,BF=3,连接EC,求的面积.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在矩形中,,,点,分别在边,上,以线段为折痕,将矩形折叠,使其点与点恰好重合并铺平,则线段_____.
20、(4分)若二次根式有意义,则x的取值范围是 ▲ .
21、(4分)如图△ABC中,∠BAC=90°,将△ABC绕点A按顺时针方向旋转一定角度得到△ADE,点B的对应点D恰好落在BC边上,若AC=4,∠B=60∘,则CD的长为____
22、(4分)将正比例函数y=3x的图象向下平移11个单位长度后,所得函数图象的解析式为______.
23、(4分)已知反比例函数y=(k为常数,k≠2)的图像有一支在第二象限,那么k的取值范围是_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:×+÷﹣|﹣2|
25、(10分)如图,在中,,点D,E分别是边AB,AC的中点,连接DE,DC,过点A作交DE的延长线于点F,连接CF.
(1)求证:;
(2)求证,四边形BCFD是平行四边形;
(3)若,,求四边形ADCF的面积.
26、(12分)在某校组织的初中数学应用能力竞赛中,每班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级的一班和二班的成绩整理并绘制成如下的统计图,二班D级共有4人.
请你根据以上提供的信息解答下列问题:
(1)求此竞赛中一班共有多少人参加比赛,并补全条形统计图.
(2)扇形统计图中A级对应的圆心角度数是 .
(3)此次竞赛中二班在C级以上(包括C级)的人数为 .
(4)请你将表格补充完成:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据平行四边形的对边平行和平行线的性质即可一一判断.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
∵四边形ABCD是平行四边形,
∴AB∥BC,
∠1=∠2,故A正确,
故只有∠1=∠3错误,
故选:D.
此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.
2、B
【解析】
试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=1.故选B.
3、A
【解析】
.故选A.
4、B
【解析】
列表法能具体地反映自变量与函数的数值对应关系,在实际生活中应用非常广泛;解析式法准确地反映了函数与自变量之间的对应规律,根据它可以由自变量的取值求出相应的函数值,反之亦然;图象法直观地反映函数值随自变量的变化而变化的规律.
【详解】
解:护士为了较直观地了解这位同学这一天24h的体温和时间的关系,可选择的比较好的方法是图象法,有利于判断体温的变化情况,
故选:B.
本题主要考查了函数的表示方法,图象法直观地反映函数值随自变量的变化而变化的规律.
5、D
【解析】
直接利用轴对称图形和中心对称图形的概念求解.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.
此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.
6、C
【解析】
利用平均数的定义分别进行计算成绩,然后判断谁优秀.
【详解】
解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,
乙的总评成绩=98×50%+90×20%+95×30%=95.5,
丙的总评成绩=80×50%+88×20%+90×30%=84.6,
∴甲乙的学期总评成绩是优秀.
故选:C.
本题考查加权平均数,掌握加权成绩等于各项成绩乘以不同的权重的和是解题的关键.
7、D
【解析】
式子为二次根式,根据二次根式的性质,被开方数大于等于0,可得x-50,解不等式就可得到答案.
【详解】
∵式子有意义,
∴x-50,
∴x5,
观察个选项,可以发现x的值可以是9.
故选D.
本题考查二次根式有意义的条件.
8、D
【解析】
根据可得出与异号,进而得出,解之即可得出结论.
【详解】
,
与异号,
,解得:.
故选:.
本题考查了一次函数的性质,熟练掌握“当时,随的增大而减小”是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、-6
【解析】
由△PAO的面积为3可得=3,再结合图象经过的是第二象限,从而可以确定k值;
【详解】
解:∵S△PAO=3,
∴=3,
∴|k|=6,
∵图象经过第二象限,
∴k<0,
∴k=−6;
故答案为:−6.
本题主要考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,掌握反比例函数系数k的几何意义,反比例函数图象上点的坐标特征是解题的关键.
10、
【解析】
点在第二象限时,横坐标<0,纵坐标>0,可得关于x的不等式,解不等式即可得答案.
【详解】
点位于第二象限,
,
解得:,
故答案为.
本题考查了象限内点的坐标特征,解一元一次不等式,解决本题的关键是记住各个象限内点的坐标的符号,进而转化为解不等式的问题.
11、.
【解析】
根据乘方的定义计算即可.
【详解】
(﹣)2=.
故答案为:.
本题考查了乘方的意义,一般地,n个相同的因数a相乘,即a·a·a·…·a计作an,这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数.
12、620
【解析】
设慢车的速度为a千米/时,快车的速度为b千米/时,根据题意可得5(a+b)=800,,联立求出a、b的值即可解答.
【详解】
解:设慢车的速度为a千米/时,快车的速度为b千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,
再根据题意快车休息2个小时后,以原速的继续向甲行驶,则快车到达甲地的时间为:
,同理慢车回到甲地的时间为:,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时,
即:,化简得5a=3b,
联立得,解得,
所以两车相遇的时候距离乙地为=500千米,
快车到位甲地的时间为=2.5小时,
而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了=120千米,所以此时慢车距离乙地为500+120=620千米,
即快车到达甲地时,慢车距乙地620千米.
故答案为:620.
本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.
13、1
【解析】
利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.
【详解】
小海这学期的体育综合成绩=(80×40%+90×60%)=1(分).
故答案为1.
三、解答题(本大题共5个小题,共48分)
14、见解析.
【解析】
利用向量的加法的平行四边形法则即可解决问题.
【详解】
如图:
即为所求.
本题考查作图-复杂作图,平面向量等知识,解题的关键是熟练掌握向量的加法的平行四边形法则,属于中考常考题型.
15、
【解析】
先对原式中能因式分解的分子和分母进行因式分解,然后再对括号内进行运算,最后将除变为乘进行运算即可.
【详解】
解:原式=
=
=
=
本题考查了分式的四则混合运算.其关键在于:①:先对能因式分解的分子和分母因式分解;②是灵活应用除以一个数就等于乘以它的倒数.
16、(1)B(0,8) (2) t=2.5s,7s,11.5s
【解析】
分析:(1)根据矩形的对边相等的性质直接写出点C的坐标;
(2)①设直线AC的解析式为y=kx+b(k≠0).将A(1,0)、C(0,8)两点代入其中,即利用待定系数法求一次函数解析式;然后利用一次函数图象上点的坐标特征,将点Q代入函数关系式求得n值;最后将Q点代入双曲线的解析式,求得m值;
②分类讨论:分当0≤t≤5时,当5<t≤9时,当9<t≤14时三种情况讨论求解.
详解:(1)B(1,8) ,
(2)① 设直线AC 函数表达式为( ),
∵ 图像经过A(1,0).C(0,8),
∴ , 解得,
∴ ,
当时,.
∵ Q(5,4)在上
∴ ,
∴ ;
②㈠当0<t≤5时,
AP=2t ,
∴ ,
∴4t=1,
∴t=2.5 ,
㈡当5<t≤9时,
OP=2t-1,CP=18-2t,
∴ ,
∴ ,
∴ ,
∴t=7 ;
㈢当9<t≤14时,
OP=2t-18,BP=28-2t,
∴ ,
∴ ,
∴t=11.5 ,
综上所述:当t=2.5s,7s,11.5s时,△APQ的面积是1.
点睛:本题考查的是反比例函数综合题,熟知反比例函数图象上点的坐标特点、三角形的面积公式及正方形的性质是解答此题的关键.注意解(2)②时,要分类讨论,以防漏解.
17、不等式组的解集为x>3,在数轴上表示见解析.
【解析】
先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来.
【详解】
∵由不等式①得:x≥2,
由不等式②得:x>3,
∴不等式组的解集为x>3,
在数轴上表示为:.
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
18、(1)EG=CG,EG⊥CG;(2)当点F在AB上(不与点A重合)时,(1)中结论仍然成立,理由见解析,点F在AB的左侧时,(1)中的结论仍然成立;(3)S△CEG=.
【解析】
(1)过E作EM⊥AD交AD的延长线于M,证明△AME是等腰直角三角形,得出AM=EM=AE=AB,证出DG=AG=AD=AM=EM,得出GM=CD,证明△GEM≌△CGD(SAS),得出EG=CG,∠EGM=∠GCD,证出∠CGE=180°-90°=90°,即可得出EG⊥CG;
(2)延长EG至H,使HG=EG,连接DH、CH、CE,证明△EFG≌△HDG(SAS),得出EF=HD,∠EFG=∠HDG,证明△CBE≌△CDH(SAS),得出CE=CH,∠BCE=∠DCH,得出∠ECH=∠BCD=90°,证明△ECH是等腰直角三角形,得出CG=EH=EG,EG⊥CG;延长EG至H,使HG=EG,连接DH、CH、CE,同理可证CG=EH=EG,EG⊥CG;
(3)作EM垂直于CB的延长线与M,先求出BM,EM的值,即可根据勾股定理求出CE的长度,从而求出CG的长,即可求出面积.
【详解】
解:(1)EG=CG,EG⊥CG;理由如下:
过E作EM⊥AD交AD的延长线于M,如图1所示:
则∠M=90°,
∵四边形ABCD是正方形,
∴AB=AD=CD,∠BAD=∠D=90°,
∴∠BAM=90°,
∵△BEF是等腰直角三角形,
∴∠BAE=45°,AE=AB,
∴∠MAE=45°,
∴△AME是等腰直角三角形,
∴AM=EM=AE=AB,
∵G是DF的中点,
∴DG=AG=AD=AM=EM,
∴GM=CD,
在△GEM和△CGD中,
,
∴△GEM≌△CGD(SAS),
∴EG=CG,∠EGM=∠GCD,
∵∠GCD+∠DGC=90°,
∴∠EGM+∠DGC=90°,
∴∠CGE=180°-90°=90°,
∴EG⊥CG;
(2)当点F在AB上(不与点A重合)时,(1)中的结论仍然成立,理由如下:
延长EG至H,使HG=EG,连接DH、CH、CE,如图2所示:
∵G是DF的中点,
∴FG=DG,
在△EFG和△HDG中,,
∴△EFG≌△HDG(SAS),
∴EF=HD,∠EFG=∠HDG,
∵△BEF是等腰直角三角形,
∴EF=BE,∠BFE=∠FBE=45°,
∴BE=DH,
∵四边形ABCD是正方形,
∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,
∴∠AFD=∠CDG,
∴∠AFE=∠CDH=135°,
∵∠CBE=90°+45°=135°,
∴∠CBE=∠CDH,
在△CBE和△CDH中,
,
∴△CBE≌△CDH(SAS),
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵EG=HG,
∴CG=EH=EG,EG⊥CG;
点F在AB的左侧时,(1)中的结论仍然成立,理由如下:
延长EG至H,使HG=EG,连接DH、CH、CE,如图3所示:
∵G是DF的中点,
∴FG=DG,
在△EFG和△HDG中,
,
∴△EFG≌△HDG(SAS),
∴EF=HD,∠EFG=∠HDG,
∵△BEF是等腰直角三角形,
∴EF=BE,∠BEF=90°,
∴BE=DH,
∵四边形ABCD是正方形,
∴AB∥CD,∠ABC=∠BCD=90°,BC=CD,
∴∠BNF=∠CDG,
∵∠EFG+∠BNF+∠BEF+∠ABE=∠HDG+∠CDG+∠CDH=360°,
∴∠BEF+∠ABE=∠CDH,
∴∠ABC+∠ABE=∠CDH,即∠CBE=∠CDH,
在△CBE和△CDH中,
,
∴△CBE≌△CDH(SAS),
∴CE=CH,∠BCE=∠DCH,
∴∠ECH=∠BCD=90°,
∴△ECH是等腰直角三角形,
∵EG=HG,
∴CG=EH=EG,EG⊥CG;
(3)如下图所示:作EM垂直于CB的延长线与M,
∵△BEF为等腰直角三角形,BF=3,
∴BE=,∠ABE=45°,
∵EM⊥BM,AB⊥CM,
∴∠EBM=45°,
∴△EMB为等腰直角三角形,
∴EM=BM=,
∵BC=4,
∴CM=,
∴CE=,
由(2)知,△GEC为等腰直角三角形,
∴CG=EG=,
∴S△CEG=.
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质等腰直角三角形的判定与性质等知识;熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解题的关键,属于压轴题型.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3.1
【解析】
根据折叠的特点得到,,可设,在Rt△AGE中,利用得到方程即可求出x.
【详解】
解∵折叠,
∴,.设,
∴.在中,,
∴,
解得.
故答案为:3.1.
此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用.
20、.
【解析】
根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.
【详解】
根据二次根式被开方数必须是非负数的条件,得.
本题考查二次根式有意义的条件,牢记被开方数必须是非负数.
21、4
【解析】
先在直角三角形ABC中,求出AB,BC,然后判断出BD=AB=4,简单计算即可
【详解】
在Rt△ABC中,AC=4,∠B=60°,
∴AB=4,BC=8,
由旋转得,AD=AB,
∵∠B=60°,
∴BD=AB=4,
∴CD=BC−BD=8−4=4
故答案为:4
此题考查含30度角的直角三角形,旋转的性质,解题关键在于求出AB,BC
22、
【解析】
根据一次函数的上下平移规则:“上加下减”求解即可
【详解】
解:将正比例函数y=3x的图象向下平移个单位长度,
所得的函数解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知一次函数图象变换的法则是解答此题的关键.
23、k<2.
【解析】
由于反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,故k-2<0,求出k的取值范围即可.
【详解】
∵反比例函数y=(k为常数,k≠3)的图像有一支在第二象限,
∴k-2<0,
解得k<2,
故答案为k<2.
此题考查反比例函数的性质,解题关键在于掌握利用其经过的象限进行解答.
二、解答题(本大题共3个小题,共30分)
24、4﹣1
【解析】
先根据二次根式的乘法、除法法则计算、去绝对值符号,再合并同类二次根式即可得.
【详解】
解:原式=1+-(1-)
=3-1+
=4-1.
本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及绝对值的性质.
25、(1),见解析;(2)四边形BCFD是平行四边形,见解析;(3).
【解析】
(1)欲证明DE=EF,只要证明△AEF≌△CED即可;
(2)只要证明BC=DF,BC∥DF即可;
(3)只要证明AC⊥DF,求出DF、AC即可;
【详解】
(1)证明:∵,∴,
∵,,
∴,
∴.
(2)∵,,∴,,
∵,∴,
∴四边形BCFD是平行四边形.
(3)在中,,,
∴,,,
∴,
∵DE∥BC,∴,
∴,
∴.
本题考查平行四边形的判定和性质、三角形的中位线定理.解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
26、(1)25人,见解析;(2)158.4°;(3)21人;(4)见解析.
【解析】
(1)由二班D等级人数及其所占百分比可得总人数;
(2)用360°乘以对应的百分比可得;
(3)总人数乘以对应的百分比即可;
(4)根据众数、平均数和中位数的定义求解可得.
【详解】
解:(1)此竞赛中一班参赛的总人数为4÷16%=25(人),
C等级人数为25﹣(6+12+5)=2(人),
补全图形如下:
(2)扇形统计图中A级对应的圆心角度数是360°×44%=158.4°,
故答案为:158.4°;
(3)此次竞赛中二班在C级以上(包括C级)的人数为25×(1﹣16%)=21(人);
故答案为:21人;
(4)补全表格如下:
故答案为:90,87.6,80;
本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、中位数与众数.
题号
一
二
三
四
五
总分
得分
批阅人
纸笔测试
实践能力
成长记录
甲
90
83
95
乙
98
90
95
丙
80
88
90
平均数
中位数
众数
一班
87.5
90
90
二班
87.6
80
100
2025届江西省上饶市上饶县九上数学开学统考模拟试题【含答案】: 这是一份2025届江西省上饶市上饶县九上数学开学统考模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省信阳固始县联考九上数学开学经典试题【含答案】: 这是一份2025届河南省信阳固始县联考九上数学开学经典试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江西省全南县数学九上开学经典模拟试题【含答案】: 这是一份2024年江西省全南县数学九上开学经典模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。