|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年江西省吉水县数学九上开学联考试题【含答案】
    立即下载
    加入资料篮
    2024年江西省吉水县数学九上开学联考试题【含答案】01
    2024年江西省吉水县数学九上开学联考试题【含答案】02
    2024年江西省吉水县数学九上开学联考试题【含答案】03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江西省吉水县数学九上开学联考试题【含答案】

    展开
    这是一份2024年江西省吉水县数学九上开学联考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是( )
    A.A B.B C.C D.D
    2、(4分)如图,a∥b,点A在直线a上,点B,C在直线b上,AC⊥b,如果AB=5cm,BC=3cm,那么平行线a,b之间的距离为( )
    A.5cmB.4cmC.3cmD.不能确定
    3、(4分)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )
    A.调查九年级全体学生B.调查七、八、九年级各30名学生
    C.调查全体女生D.调查全体男生
    4、(4分)一元二次方程的解是( )
    A.B.
    C.D.
    5、(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为( )
    A.B.C.D.
    6、(4分)如图,在中,,,于点,则与的面积之比为( )
    A.B.C.D.
    7、(4分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是 ( )
    A.289(1―2x)=256
    B.256(1+x)2=289
    C.289(1―x)2=256
    D.289―289(1―x)―289(1―x)2=256
    8、(4分)在平面直角坐标系中,点P(-3,4)关于y轴对称点的坐标为( )
    A.(-3,4) B.(3,4) C.(3,-4) D.(-3,-4)
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已知点A(a,5)与点B(-3,b)关于y轴对称,则a-b= .
    10、(4分)菱形的边长为,,则以为边的正方形的面积为__________.
    11、(4分)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
    12、(4分)化简:___________.
    13、(4分)把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知:如图,平面直角坐标系xOy中,点A、B的坐标分别为A(2,0),B(0,﹣2),P为y轴上B点下方一点,以AP为边作等腰直角三角形APM,其中PM=PA,点M落在第四象限,过M作MN⊥y轴于N.
    (1)求直线AB的解析式;
    (2)求证:△PAO≌△MPN;
    (3)若PB=m(m>0),用含m的代数式表示点M的坐标;
    (4)求直线MB的解析式.
    15、(8分)计算:
    (1)
    (2)
    16、(8分)如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)
    (1)当t为何值时,四边形PCDQ是平行四边形?
    (2)当t为何值时,△QDP的面积为60cm2?
    (3)当t为何值时,PD=PQ?
    17、(10分)甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件.乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为(个),甲加工零件的时间为(时),与之间的函数图象如图所示.
    (1)在乙追赶甲的过程中,求乙每小时加工零件的个数.
    (2)求甲提高加工速度后甲加工的零件数与之间的函数关系式.
    (3)当甲、乙两人相差12个零件时,直接写出甲加工零件的时间.
    18、(10分)(感知)如图①在等边△ABC和等边△ADE中,连接BD,CE,易证:△ABD≌△ACE;
    (探究)如图②△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE,求证:△ABD∽△ACE;
    (应用)如图③,点A的坐标为(0,6),AB=BO,∠ABO=120°,点C在x轴上运动,在坐标平面内作点D,使AD=CD,∠ADC=120°,连结OD,则OD的最小值为 .
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.
    20、(4分)如果三角形三边长分别为,k,,则化简得___________.
    21、(4分)小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.
    22、(4分)已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.
    23、(4分)若关于x的分式方程有增根,则k的值为__________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间 x(小时)之间的函数图象.
    (1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;
    (2)当它们行驶7了小时时,两车相遇,求乙车速度.
    25、(10分)(1)化简:;(2)解方程:;(3)用配方法解方程:x2-8x=84;(4)用公式法解方程:2x2+3x-1=0
    26、(12分)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线的顶点.
    (1)当时,求该抛物线下方(包括边界)的好点个数.
    (2)当时,求该抛物线上的好点坐标.
    (3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    A、是轴对称图形,是中心对称图形,故本选项错误;
    B、是轴对称图形,不是中心对称图形,故本选项正确;
    C、不是轴对称图形,也不是中心对称图形,故本选项错误;
    D、是中心对称图形,是轴对称图形,故本选项错误.
    故选B.
    2、B
    【解析】
    从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.
    【详解】
    解:∵AC⊥b,
    ∴△ABC是直角三角形,
    ∵AB=5cm,BC=3cm,
    ∴AC===4(cm),
    ∴平行线a、b之间的距离是:AC=4cm.
    故选:B.
    本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.
    3、B
    【解析】
    【分析】如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.要抽出具有代表性的调查样本.
    【详解】A.只调查九年级全体学生,没有代表性;
    B. 调查七、八、九年级各30名学生,属于分层抽样,有代表性;
    C. 只调查全体女生,没有代表性;
    D. 只调查全体男生,没有代表性.
    故选B.
    【点睛】本题考核知识点:抽样调查. 解题关键点:要了解全校学生的课外作业负担情况,抽取的样本一定要具有代表性.
    4、D
    【解析】
    用因式分解法求解即可.
    【详解】
    解:x2+1x=0,
    x(x+1)=0,
    所以x=0或x+1=0,
    解得:x1=0,x2=-1.
    故选:D.
    本题考查了一元二次方程的解法,根据方程的特点选择恰当的方法是解决此题的关键.
    5、D
    【解析】
    解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.
    点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.
    6、A
    【解析】
    易证得△BCD∽△BAC,得∠BCD=∠A=30°,那么BC=2BD,即△BCD与△BAC的相似比为1:2,根据相似三角形的面积比等于相似比的平方即可得到正确的结论.
    【详解】
    解:∵
    ∴∠BDC=90°,
    ∵∠B=∠B,∠BDC=∠BCA=90°,
    ∴△BCD∽△BAC;①
    ∴∠BCD=∠A=30°;
    Rt△BCD中,∠BCD=30°,则BC=2BD;
    由①得:S△BCD:S△BAC=(BD:BC)2=1:4;
    故选:A.
    此题主要考查的是直角三角形和相似三角形的性质;
    相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.
    7、C
    【解析】
    试题分析:两次降价后的商品的售价=降价前的商品的售价×(1-平均每次降价的百分率)2.
    由题意可列方程为.选:C.
    考点:根据实际问题列方程
    8、B
    【解析】试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
    解:点P(﹣3,4)关于y轴对称点的坐标为(3,4).
    故选B.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、-1
    【解析】
    试题分析:因为关于y轴对称的两个点的横坐标互为相反数,纵坐标不变,又点A(a,5)与点B(-3,b)关于y轴对称,所以a=3,b=5,所以a-b=3-5=-1.
    考点:关于y轴对称的点的坐标特点.
    10、
    【解析】
    如图,连接AC交BD于点O,得出△ABC是等边三角形,利用菱形的性质和勾股定理求得BO,得出BD,即可利用正方形的面积解决问题.
    【详解】
    解:如图,
    连接AC交BD于点O,
    ∵在菱形ABCD中,∠ABC=60°,AB=BC,AB=4,
    ∴△ABC是等边三角形∠ABO=30°,AO=2,
    ∴BO==2 ,
    ∴BD=2OB=4,
    ∴正方形BDEF的面积为1.
    故答案为1.
    本题考查菱形的性质,正方形的性质,勾股定理,等边三角形的判定与性质,注意特殊角的运用是解决问题的关键.
    11、1或8
    【解析】
    由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.
    【详解】
    设AA′=x,AC与A′B′相交于点E,
    ∵△ACD是正方形ABCD剪开得到的,
    ∴△ACD是等腰直角三角形,
    ∴∠A=15∘,
    ∴△AA′E是等腰直角三角形,
    ∴A′E=AA′=x,
    A′D=AD−AA′=12−x,
    ∵两个三角形重叠部分的面积为32,
    ∴x(12−x)=32,
    整理得,x−12x+32=0,
    解得x=1,x=8,
    即移动的距离AA′等1或8.
    本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
    12、
    【解析】
    根据二次根式的乘法,可得第二个空的答案;
    【详解】

    故答案为:.
    此题考查二次根式的性质与化简,解题关键在于掌握运算法则.
    13、
    【解析】
    画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.
    【详解】
    解:根据题意,画出树状图如下:
    一共有9种等可能情况,其中x与y的和为偶数的有5种结果,
    ∴x与y的和为偶数的概率为 ,
    故答案为:.
    本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.
    三、解答题(本大题共5个小题,共48分)
    14、(3)y=x﹣3.(3)详见解析;(3)(3+m,﹣4﹣m);(4)y=﹣x﹣3.
    【解析】
    (3)直线AB的解析式为y=kx+b(k≠2),利用待定系数法求函数的解析式即可;
    (3)先证∠APO=∠PMN,用AAS证△PAO≌△MPN;
    (3)由(3)中全等三角形的性质得到OP=NM,OA=NP.根据PB=m,用m表示出NM和ON=OP+NP,根据点M在第四象限,表示出点M的坐标即可.
    (4)设直线MB的解析式为y=nx﹣3,根据点M(m+3,﹣m﹣4).然后求得直线MB的解析式.
    【详解】
    (3)解:设直线AB:y=kx+b(k≠2)
    代入A(3,2 ),B (2,﹣3 ),得

    解得,
    ∴直线AB的解析式为:y=x﹣3.
    (3)证明:作MN⊥y轴于点N.
    ∵△APM为等腰直角三角形,PM=PA,
    ∴∠APM=92°.
    ∴∠OPA+∠NPM=92°.
    ∵∠NMP+∠NPM=92°,
    ∴∠OPA=∠NMP.
    在△PAO与△MPN中

    ∴△PAO≌△MPN(AAS).
    (3)由(3)知,△PAO≌△MPN,则OP=NM,OA=NP.
    ∵PB=m(m>2),
    ∴ON=3+m+3=4+m MN=OP=3+m.
    ∵点M在第四象限,
    ∴点M的坐标为(3+m,﹣4﹣m).
    (4)设直线MB的解析式为y=nx﹣3(n≠2).
    ∵点M(3+m,﹣4﹣m).
    在直线MB上,
    ∴﹣4﹣m=n(3+m)﹣3.
    整理,得(m+3)n=﹣m﹣3.
    ∵m>2,
    ∴m+3≠2.
    解得 n=﹣3.
    ∴直线MB的解析式为y=﹣x﹣3.
    本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.
    15、(1);(2).
    【解析】
    (1)根据二次根式的乘法法则进行运算即可
    (2)分母有理化即可
    【详解】
    (1)原式;
    (2)原式

    此题考查二次根式的乘法,解题关键在于掌握运算法则
    16、 (1)当t=7时,四边形PCDQ是平行四边形;(2)当t=时,△QDP的面积为60cm2;(3)当t=时,PD=PQ.
    【解析】
    (1)根据题意用t表示出CP=t,AQ=2t,根据平行四边形的判定定理列出方程,解方程即可;
    (2)根据三角形的面积公式列方程,解方程得到答案;
    (3)根据等腰三角形的三线合一得到DH=DQ,列方程计算即可.
    【详解】
    (1)由题意得,CP=t,AQ=2t,
    ∴QD=21﹣2t,
    ∵AD∥BC,
    ∴当DQ=PC时,四边形PCDQ是平行四边形,
    则21﹣2t=t,
    解得,t=7,
    ∴当t=7时,四边形PCDQ是平行四边形;
    (2)在Rt△ABE中,BE==12,
    由题意得,×(21﹣2t)×12=60,
    解得,t=,
    ∴当t=时,△QDP的面积为60cm2;
    (3)作PH⊥DQ于H,DG⊥BC于G,则四边形HPGD为矩形,
    ∴PG=HD,
    由题意得,CG=AE=5,
    ∴PG=t﹣5,
    当PD=PQ,PH⊥DQ时,DH=DQ,即t﹣5=(21﹣2t),
    解得,t=,
    则当t=时,PD=PQ.
    本题考查的是平行四边形的性质和判定、等腰三角形的性质,掌握平行四边形的判定定理和性质定理是解题的关键.
    17、(1)在乙追赶甲的过程中,乙每小时加工零件60个;(2)();(3)甲加工零件的时间是时、时或时
    【解析】
    (1)根据题意可以求出甲所用时间,继而可得出在乙追赶甲的过程中,乙每小时加工零件的个数;
    (2)根据题意和函数图象中的数据可以求出甲提高加工速度后甲加工的零件数与之间的函数关系式;
    (3)列一元一次方程求解即可;
    【详解】
    解:(1)甲加工100个零件用的时间为:(小时),
    ∴在乙追赶甲的过程中,乙每小时加工零件的个数为:,
    答:在乙追赶甲的过程中,乙每小时加工零件60个;
    (2)设甲提高加工速度后甲加工的零件数与之间的函数关系式是,
    ,得,
    即甲提高加工速度后甲加工的零件数与之间的函数关系式是();
    (3)当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时,
    理由:令,
    解得,,,
    令,
    解得,
    即当甲、乙两人相差12个零件时,甲加工零件的时间是时、时或时.
    本题考查的知识点是一次函数的应用,解题的关键是理解一次函数图象,能够从图象中得出相关的信息.
    18、探究:见解析;应用:.
    【解析】
    探究:由△DAE∽△BAC,推出,可得,由此即可解决问题;
    应用:当点D在AC的下方时,先判定△ABO∽△ADC,得出,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;当点D在AC的上方时,作B关于y轴的对称点B',则同理可得OD最小值为.
    【详解】
    解:探究:如图②中,
    ∵∠BAC=∠DAE,∠ABC=∠ADE,
    ∴△DAE∽△BAC,∠DAB=∠EAC,
    ∴,
    ∴,
    ∴△ABD∽△ACE;
    应用:①当点D在AC的下方时,如图③−1中,
    作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,
    ∴,即,
    又∵∠BAD=∠OAC,
    ∴△ACO∽△ADB,
    ∴∠ABD=∠AOC=90°,
    ∵当OD⊥BE时,OD最小,
    过O作OF⊥BD于F,则△BOF为直角三角形,
    ∵A点的坐标是(0,6),AB=BO,∠ABO=120°,
    ∴易得OB=2,
    ∵∠ABO=120°,∠ABD=90°,
    ∴∠OBF=30°,
    ∴OF=OB=,
    即OD最小值为;
    当点D在AC的上方时,如图③−2中,
    作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',
    ∴∠AB'D=∠AOC=90°,
    ∴当OD⊥B'E时,OD最小,
    过O作OF'⊥B'D于F',则△B'OF'为直角三角形,
    ∵A点的坐标是(0,6),AB'=B'O,∠AB'O=120°,
    ∴易得OB'=2,
    ∵∠AB'O=120°,∠AB'D=90°,
    ∴∠OB'F'=30°,
    ∴OF'=OB'=,
    即OD最小值为.
    故答案为:.
    本题属于相似形综合题,考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、4.1
    【解析】
    竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.
    【详解】
    解:1丈=10尺,
    设折断处离地面的高度为x尺,则斜边为(10-x)尺,
    根据勾股定理得:x2+32=(10-x)2
    解得:x=4.1.
    答:折断处离地面的高度为4.1尺.
    故答案为:4.1.
    此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
    20、11-3k.
    【解析】
    求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.
    【详解】
    ∵一个三角形的三边长分别为、k、,
    ∴-<k<+,
    ∴3<k<4,
    =-|2k-5|,
    =6-k-(2k-5),
    =-3k+11,
    =11-3k,
    故答案为:11-3k.
    本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.
    21、
    【解析】
    本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程、速度所用时间不变.题中的等量关系是:从家到学校的路程为2千米;去时上坡时间+平路时间=从家到学校的总时间;回时下坡时间+平路时间=从学校回家花费的时间,据此可列式求解.
    【详解】
    小刚骑车从家到学校比从学校回家花费的时间多:( )-()=-=h,
    故答案为:
    本题考查列代数式,解答本题的关键读懂题意,找出合适的数量关系.
    22、
    【解析】
    根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.
    【详解】
    解:∵正方形的对角线长为2,
    设正方形的边长为x,
    ∴2x²=(2)²
    解得:x=2
    ∴正方形的边长为:2
    故答案为2.
    本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.
    23、或
    【解析】
    分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出的值,代入整式方程求出的值即可.
    【详解】
    解:
    去分母得:,
    整理得:
    由分式方程有增根,得到,
    解得:或,
    把代入整式方程得:;
    把代入整式方程得:,
    则的值为或.
    故答案为:或
    此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.
    二、解答题(本大题共3个小题,共30分)
    24、(1)
    (2)75(千米/小时)
    【解析】
    (1)先根据图象和题意知道,甲是分段函数,所以分别设0(2)注意相遇时是在6-14小时之间,求交点时应该套用甲中的函数关系式为y=-75x+1050,直接把x=7代入即可求相遇时y的值,再求速度即可.
    【详解】
    (1)①当0把点(6,600)代入得
    k1=100
    所以y=100x;
    ②当6∵图象过(6,600),(14,0)两点

    解得
    ∴y=−75x+1050

    (2)当x=7时,y=−75×7+1050=525,
    V乙==75(千米/小时).
    25、(1)(2)x=30;(3);(4)
    【解析】
    (1)根据分式的运算法则即可求出答案.
    (2)根据分式方程的解法即可求出答案.
    (3)根据配方法即可求出答案.
    (4)根据公式法即可求出答案.
    【详解】
    解:(1)原式=
    (2)∵


    ∴,
    经检验,x=30是原分式方程的解;
    (3)x2-8x=84



    ∴;
    (4)∵

    ∴.
    本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
    26、(1)好点有:,,,和,共5个;(2),和;(3).
    【解析】
    (1)如图1中,当m=0时,二次函数的表达式y=﹣x2+2,画出函数图象,利用图象法解决问题即可;(2)如图2中,当m=3时,二次函数解析式为y=﹣(x﹣3)2+5,如图2,结合图象即可解决问题;(3)如图3中,抛物线的顶点P(m,m+2),推出抛物线的顶点P在直线y=x+2上,由点P在正方形内部,则0<m<2,如图3中,E(2,1),F(2,2),观察图象可知,当点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点时,抛物线与线段EF有交点(点F除外),求出抛物线经过点E或点F时Dm的值,即可判断.
    【详解】
    解:(1)当时,二次函数的表达式为
    画出函数图像(图1)
    图1
    当时,;当时,
    抛物线经过点和
    好点有:,,,和,共5个
    (2)当时,二次函数的表达式为
    画出函数图像(图2)
    图2
    当时,;当时,;当时,
    该抛物线上存在好点,坐标分别是,和
    (3)抛物线顶点P的坐标为
    点P支直线上
    由于点P在正方形内部,则
    如图3,点,
    图3
    当顶点P支正方形OABC内,且好点恰好存在8个时,抛物线与线段EF有交点(点F除外)
    当抛物线经过点时,
    解得:,(舍去)
    当抛物线经过点时,
    解得:,(舍去)
    当时,顶点P在正方形OABC内,恰好存在8个好点
    本题属于二次函数综合题,考查了正方形的性质,二次函数的性质,好点的定义等知识,解题的关键是理解题意,学会正确画出图象,利用图象法解决问题,学会利用特殊点解决问题.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024-2025学年江西省新余市名校数学九上开学联考试题【含答案】: 这是一份2024-2025学年江西省新余市名校数学九上开学联考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省婺源县联考九上数学开学检测模拟试题【含答案】: 这是一份2024-2025学年江西省婺源县联考九上数学开学检测模拟试题【含答案】,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江西省九江市名校数学九上开学调研试题【含答案】: 这是一份2024-2025学年江西省九江市名校数学九上开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map