2025届河南省信阳固始县联考九上数学开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在△ABC中,BC=5,AC=8,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长等于( )
A.18B.15C.13D.12
2、(4分)函数 y=ax﹣a 的大致图象是( )
A.B.C.D.
3、(4分)下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
4、(4分)某市为了分析全市1万名初中毕业生的数学毕业成绩,共随机抽取40本试卷,每本30份,则这个问题中( )
A.个体是每个学生
B.样本是抽取的1200名学生的数学毕业成绩
C.总体是40本试卷的数学毕业成绩
D.样本是30名学生的数学毕业成绩
5、(4分)如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,观察图形,与∠AED相等的角有( )
A.4个B.3个C.2个D.1个
6、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
A.90°B.75°C.65°D.85°
7、(4分)如图,在中,下列结论错误的是()
A.B.C.D.
8、(4分)如图,当y1>y2时,x的取值范围是 ( )
A.x>1B.x>2C.x<1D.x<2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在矩形ABCD中,AD=4,E,F分别为边AB,CD上一动点,AE=CF,分别以DE,BF为对称轴翻折△ADE,△BCF,点A,C的对称点分别为P,Q.若点P,Q,E,F恰好在同一直线上,且PQ=1,则EF的长为_____.
10、(4分)如图,已知∠EAD=30°,△ADE绕点A旋转50°后能与△ABC重合,则∠BAE=_________°.
11、(4分)若m2﹣n2=6,且m﹣n=2,则m+n=_________
12、(4分)若,则=______
13、(4分)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)化简求值:,从的值:0,1,2中选一个代入求值.
15、(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.
(1)求证:△BDC≌△EFC;
(2)若EF∥CD,求证:∠BDC=90°.
16、(8分)如图,在△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为17cm,求△ABC
的周长.
17、(10分)某市共有三个郊县,各郊县的人数及人均耕地面积如下表所示:
求该市郊县所有人口的人均耕地面积.(精确到0.01公顷)
18、(10分)如图,在平面直角坐标系中,直线y1=x+1与双曲线(k>0)相交于点A、B,已知点A坐标(2,m).
(1)求k的值;
(2)求点B的坐标,并观察图象,写出当时,x的取值范围.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
20、(4分)如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
21、(4分)一个两位数,它的十位数上的数字比个位上的数字大2.且这个两位数小于40,则这个两位数是________.
22、(4分)如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF= _______.
23、(4分)关于x的一元二次方程x2+4x+2k﹣1=0有两个实数根,则k的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲乙两车沿直路同向匀速行驶,甲、乙两车在行驶过程中离乙车出发地的路程与出发的时间的函数关系加图1所示,两车之间的距离与出发的时间的函数关系如图2所示.
(1)图2中__________,__________;
(2)请用待定系数法求、关于的函数解析式;(不用写自变量取值范围)
(3)出发多长时间,两车相距?
25、(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
26、(12分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AF⊥BD,CE⊥BD,垂足分别为E、F;
(1)连结AE、CF,得四边形AFCE,试判断四边形AFCE是下列图形中的哪一种?
①平行四边形;②菱形;③矩形;
(2)请证明你的结论;
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
先根据线段垂直平分线的性质得出,故可得出的周长,由此即可得出结论.
【详解】
解:在中,,,是线段的垂直平分线,
,
的周长.
故选:C.
本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.
2、C
【解析】
将y=ax-a化为y= a(x-1),可知图像过点(1,0),进行判断可得答案.
【详解】
解:一次函数y=ax-a=a(x-1)过定点(1,0),而选项A 、B、 D中的图象都不过点(1,0), 所以C项图象正确.
故本题正确答案为C.
本题主要考查一次函数的图象和一次函数的性质.
3、A
【解析】
试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;
A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;
故选:A.
4、B
【解析】
A. 个体是每份试卷,
C. 总体是一万名初中毕业生的数学毕业成绩;
D. 样本是抽取的1200名学生的数学毕业成绩,
故B正确
5、B
【解析】
根据正方形的性质证明△DAE≌△ABF,即可进行判断.
【详解】
解:∵四边形ABCD是正方形,
∴∠DAB=∠B=90°,AD=AB,
∵AF=DE,
∴△DAE≌△ABF(HL),
∴∠ADE=∠BAF,∠AED=∠AFB,
∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,
∴∠DAG=∠AED,
∵∠ADE+∠CDG=90°,
∴∠CDE=∠AED.
故选:B.
此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质.
6、D
【解析】
由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
【详解】
∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
∴∠BAE=120°且∠BAC=35°
∴∠CAE=85°
故选D.
本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
7、D
【解析】
根据平行四边形的对边平行和平行线的性质即可一一判断.
【详解】
∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,(平行四边形的对边相等,对角相等)故B、C正确.
∵四边形ABCD是平行四边形,
∴AB∥BC,
∠1=∠2,故A正确,
故只有∠1=∠3错误,
故选:D.
此题考查平行四边形的性质,解题关键在于掌握平行四边形的对边相等;平行四边形的对角相等;平行四边形的对边平行.
8、C
【解析】
分析:根据图像即可解答.
详解:观察图像可知:当x<1时,y1=kx+b在y2=mx+n的上方,即y1>y2..
故选C.
点睛:本题考查一次函数的图像问题,主要是通过观察当x在哪个范围内时对应的函数值较大.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2或
【解析】
过点E作,垂足为G,首先证明为等腰三角形,然后设,然后分两种情况求解:I.当QF与PE不重叠时,由翻折的性质可得到,则, II. 当QF与PE重叠时,:EF=DF=2x﹣1,FG=x﹣1,然后在中,依据勾股定理列方程求解即可.
【详解】
解:I.当QF与PE不重叠时,如图所示:过点E作EG⊥DC,垂足为G.
设AE=FC=x.
由翻折的性质可知:∠AED=∠DEP,EP=AE=FC=QF=x,则EF=2x+1.
∵AE∥DG,
∴∠AED=∠EDF.
∴∠DEP=∠EDF.
∴EF=DF.
∴GF=DF﹣DG=x+1.
在Rt△EGF中,EF2=EG2+GF2,即(2x+1)2=42+(x+1)2,解得:x=2(负值已舍去).
∴EF=2x+1=2×2+1=2.
II. 当QF与PE重叠时,备用图中,同法可得:EF=DF=2x﹣1,FG=x﹣1,
在Rt△EFG中,∵EF2=EG2+FG2,
∴(2x﹣1)2=42+(x﹣1)2,
∴x=或﹣2(舍弃),
∴EF=2x﹣1=
故答案为:2或.
本题主要考查的是翻折的性质、勾股定理的应用,依据勾股定理列出关于x的方程是解题的关键.
10、20
【解析】
利用旋转的性质得出∠DAB=50°,进而得出∠BAE的度数.
【详解】
解:∵∠EAD=30°,△ADE绕着点A旋转50°后能与△ABC重合,
∴∠DAB=50°,
则∠BAE=∠DAB-∠DAE=50°-30°=20°.
故答案为:20.
此题主要考查了旋转的性质,得出旋转角∠DAB的度数是解题关键.
11、3
【解析】
利用平方差公式得到(m+n)(m-n)=6,然后把m-n=2代入计算即可.
【详解】
∵,
∴m+n=3.
12、
【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.
【详解】
设=k,
x=2k,y=4k,z=5k
=.
故答案是:.
考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.
13、x≤1.
【解析】
将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;
【详解】
解:点P(m,3)代入y=x+2,
∴m=1,
∴P(1,3),
结合图象可知x+2≤ax+c的解为x≤1,
故答案为:x≤1.
本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、2.
【解析】
原式括号中两项通分并利用除法法则计算,约分得到最简结果,把x=2代入计算即可求出值,注意x=0或x=1分母没有意义.
【详解】
,
取代入得:原式.
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
15、(1)详见解析;(2)详见解析.
【解析】
(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;
(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.
【详解】
(1)由旋转的性质得,CD=CF,∠DCF=90°,
∴∠DCE+∠ECF=90°,
∵∠ACB=90°,
∴∠BCD+∠DCE=90°,
∴∠BCD=∠ECF,
在△BDC和△EFC中,
,
∴△BDC≌△EFC(SAS);
(2)∵EF∥CD,
∴∠F+∠DCF=180°,
∵∠DCF=90°,
∴∠F=90°,
∵△BDC≌△EFC,
∴∠BDC=∠F=90°.
本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.
16、27cm.
【解析】
已知DE是AC的垂直平分线,根据线段垂直平分线的性质可得DA=DC,AC=2AE=10cm,再由AB+BD+AD=AB+BD+DC=AB+BC=17cm,由此即可求得△ABC的周长.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,AC=2AE=10cm,
∵△ABD的周长为17cm,
∴AB+BD+AD=AB+BD+DC=AB+BC=17cm,
∴△ABC的周长=AB+BC+AC=27cm.
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记性质并求出AB+BC=17是解题的关键.
17、该市郊县所有人口的人均耕地面积是0.17公顷.
【解析】
根据图表中的数据计算出总的耕地面积以及总人数,作除法运算即可得出答案.
【详解】
解:(公顷)
答:该市郊县所有人口的人均耕地面积是0.17公顷.
本题考查的知识点是加权平均数,从图表中得出相关的信息是解此题的关键.
18、(1)k=6;(2)当x<﹣3或0<x<2时,;
【解析】
分析:(1)设A(2,m),将A纵坐标代入一次函数解析式求出m的值,确定出A坐标,代入反比例解析式求出k的值,即可确定出反比例解析式;
(2)联立两函数解析式求出B的坐标,由A与B横坐标,利用图象即可求出当时,自变量x的取值范围.
详解:(1)∵A(2,m),
将A(2,m)代入直线y=x+1得:m=3,即A(2,3)
将A(2,3)代入关系式 y= 得:k=6;
(2)联立直线与反比例解析式得:,
消去y得: x+1=,
解得: x=2或x=﹣3,
将x=﹣3代入y=x+1, 得:y=﹣3+1=﹣2,即B(﹣3,﹣2),
则当x<﹣3或0<x<2时,.
点睛:本题考查了反比例函数与一次函数的交点问题,利用数形结合的思想,熟练掌握数形结合思想是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、72
【解析】
根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
【详解】
解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
∴∠AFE=∠D=90°,AD=AF,
∵∠EFC+∠AFB=180°-90°=90°,
∠BAF+∠AFB=90°,
∴∠BAF=∠EFC,
∵,
∴设CE=3k,CF=4k,
∴,
∵∠BAF=∠EFC,且∠B=∠C=90°
∴△ABF∽△FCE,
∴,即,
∴BF=6k,
∴BC=BF+CF=10k=AD,
∵AE2=AD2+DE2,
∴500=100k2+25k2,
∴k=2
∴AB=CD =16cm,BC=AD=20cm,
∴四边形ABCD的周长=72cm
故答案为:72.
本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
20、1
【解析】
试题解析:∵Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,
∴CE=CA=2,∠ECF=∠ACB=90°,
∴点E、C、B共线,
∴BE=EC+BC=2+1=1.
21、31或1
【解析】
首先设个位数字为x,则十位数字为x+2,即可以列出不等式求解.
【详解】
解:设个位数字为x,则十位数字为x+2,由题意得
10(x+2)+x<40
解得:
因为x是非负整数,
所以x=1或0,该数的个位数字为1或0,则十位数字是3或2,故这个两位数为31或1.
故答案为:31或1.
此题考查一元一次不等式的应用,理解题意,找出不等关系列出不等式即可求解.
22、
【解析】
过点M作MH∥BC交CP于H,根据两直线平行,同位角相等可得∠MHP=∠BCP,两直线平行,内错角相等可得∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角边角”证明△NCF和△MHF全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,根据矩形的对边相等可得BC=AD=10,再利用勾股定理列式求出AP,然后求出PD,再次利用勾股定理列式计算即可求出CP,从而得解.
【详解】
如图,过点M作MH∥BC交CP于H,
则∠MHP=∠BCP,∠NCF=∠MHF,
∵BP=BC,
∴∠BCP=∠BPC,
∴∠BPC=∠MHP,
∴PM=MH,
∵PM=CN,
∴CN=MH,
∵ME⊥CP,
∴PE=EH,
在△NCF和△MHF中,
,
∴△NCF≌△MHF(AAS),
∴CF=FH,
∴EF=EH+FH=CP,
∵矩形ABCD中,AD=10,
∴BC=AD=10,
∴BP=BC=10,
在Rt△ABP中,AP===6,
∴PD=AD−AP=10−6=4,
在Rt△CPD中,CP===,
∴EF=CP=×=.
故答案为:.
本题考查等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质,解题的关键是掌握等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质.
23、k≤
【解析】
根据方程有两个实数根可以得到根的判别式,进而求出的取值范围.
【详解】
解:由题意可知:
解得:
故答案为:
本题考查了根的判别式的逆用---从方程根的情况确定方程中待定系数的取值范围,属中档题型,解题时需注意认真理解题意.
二、解答题(本大题共3个小题,共30分)
24、(1)100,500;(2)、;(3)出发,两车相距.
【解析】
(1)结合图1和图2即可知道,两车开始距离为b=500,两车相遇时间为a=100
(2)利用待定系数法即可求出、关于的函数解析式,将点(500,0)和点(100,2500)代入的解析式,将点(100,2500)代入的解析式,解方程即可
【详解】
解:(1)100,500
(2)设,,
由题意得,,.
解得,.
∴、关于的函数解析式分别为、.
(3)由题意可知,.
∵.
解得,
出发,两车相距.
本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键.
25、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
26、 (1)平行四边形(2)证明见解析.
【解析】
易证△ABF≌ △CDE,再利用对边平行且相等得出四边形AFCE为平行四边形.
【详解】
解:(1)平行四边形;
(2)证明:平行四边形ABCD中,
AO=CO,
∵AF⊥BD,CE⊥BD,
∴∠AFO=∠CEO=90°,
又∠AOF=∠COE,
∴△ABF≌△CDE(AAS)
∴AF=CE
∵AF∥CE
∴四边形AFCE为平行四边形.
题号
一
二
三
四
五
总分
得分
批阅人
郊县
人数(万人)
人均耕地面积(公顷)
20
0.15
5
0.20
10
0.18
2025届河南省信阳罗山县联考九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2025届河南省信阳罗山县联考九年级数学第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届河南省固始县联考九上数学开学联考模拟试题【含答案】: 这是一份2025届河南省固始县联考九上数学开学联考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河南省信阳浉河区七校联考数学九上开学达标检测试题【含答案】: 这是一份2024年河南省信阳浉河区七校联考数学九上开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。