![2025届江苏省扬州市江都区邵凡片数学九年级第一学期开学学业质量监测试题【含答案】第1页](http://img-preview.51jiaoxi.com/2/3/16235033/0-1728522560822/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省扬州市江都区邵凡片数学九年级第一学期开学学业质量监测试题【含答案】第2页](http://img-preview.51jiaoxi.com/2/3/16235033/0-1728522560863/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届江苏省扬州市江都区邵凡片数学九年级第一学期开学学业质量监测试题【含答案】第3页](http://img-preview.51jiaoxi.com/2/3/16235033/0-1728522560931/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届江苏省扬州市江都区邵凡片数学九年级第一学期开学学业质量监测试题【含答案】
展开
这是一份2025届江苏省扬州市江都区邵凡片数学九年级第一学期开学学业质量监测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)一元二次方程的两根是( )
A.0,1B.0,2C.1,2D.1,
2、(4分)将分式中的a,b都扩大2倍,则分式的值( )
A.不变B.也扩大2倍C.缩小二分之一D.不能确定
3、(4分)如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为( )
A.9B.10C.11D.12
4、(4分)下列说法中,错误的是( )
A.平行四边形的对角线互相平分
B.对角线互相平分的四边形是平行四边形
C.菱形的对角线互相垂直
D.对角线互相垂直的四边形是菱形
5、(4分)如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是( )
A.AB=5B.∠C=90°C.AC=2D.∠A=30°
6、(4分)甲,乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么( )
A.甲的波动比乙的波动大B.乙的波动比甲的波动大
C.甲,乙的波动大小一样D.甲,乙的波动大小无法确定
7、(4分)下列不等式的变形中,不正确的是( )
A.若,则B.若,则
C.若,则D.若,则
8、(4分)学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若是正比例函数,则的值为______.
10、(4分)在菱形中,,,则菱形的周长是_______.
11、(4分)若分式有意义,则实数x的取值范围是_______.
12、(4分)若恒成立,则A+B=____.
13、(4分)在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,一块铁皮(图中阴影部分),测得,,,,.求阴影部分面积.
15、(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
16、(8分)如图1,点是正方形的中心,点是边上一动点,在上截取,连结,.初步探究:在点的运动过程中:
(1)猜想线段与的关系,并说明理由.
深入探究:
(2)如图2,连结,过点作的垂线交于点.交的延长线于点.延长交的延长线于点.
①直接写出的度数.
②若,请探究的值是否为定值,若是,请求出其值;反之,请说明理由
17、(10分)如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.
(1)请找出图中一对相似三角形,并证明;
(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.
18、(10分)某玉米种子的价格为a元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折.下表是购买量x(千克)、付款金额y(元)部分对应的值,请你结合表格:
(1)写出a、b的值,a= b= ;
(2)求出当x>2时,y关于x的函数关系式;
(3)甲农户将18.8元钱全部用于购买该玉米种子,计算他的购买量.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.
20、(4分)若直角三角形的两边长分别为1和2,则斜边上的中线长为_____.
21、(4分)一组数据3,2,3,4,的平均数是3,则它的众数是________.
22、(4分)重庆新高考改革方案正式确定,高考总成绩的组成科目由“语数外+文综/理综”变成“3+1+2”,其中“2”是指学生需从思想政治、地理、化学、生物学四门科目中自选2门科目,则小明从这四门学科中恰好选择化学、生物的概率为_____.
23、(4分)如图,在平面直角坐标系中,▱ABCD的顶点坐标分别为A(3,a)、B(2,2)、C(b,3)、D(8,6),则a+b的值为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
25、(10分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线.
26、(12分)已知一个三角形的三边长分别为,求这个三角形的周长(要求结果化简).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
利用因式分解法解答即可得到方程的根.
【详解】
解:,
,
解得,.
故选:A.
本题主要考查了一元二次方程的解法,要根据不同的题目采取适当的方法解题.
2、B
【解析】
依题意,分别用2a和2b去代换原分式中的a和b,利用分式的基本性质化简即可.
【详解】
分别用2a和2b去代换原分式中的a和b,原式= =
可见新分式的值是原分式的2倍.
故选B.
此题考查分式的基本性质,解题关键在于分别用2a和2b去代换原分式中的a和b
3、C
【解析】
分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.
详解:∵四边形ABCD是平行四边形,∴AB=CD=7,BC=AD,AD∥BC.
∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=7,DC=DE=7,∴EF=AF+DE﹣AD=7+7﹣AD=3,∴AD=1,∴BC=1.
故选C.
点睛:本题考查了平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.
4、D
【解析】
试题分析:A. 平行四边形的对角线互相平分,说法正确;
B.对角线互相平分的四边形是平行四边形,说法正确;
C.菱形的对角线互相垂直,说法正确;
D.对角线互相垂直的四边形是菱形,说法错误.
故选D.
考点:1.平行四边形的判定;2.菱形的判定.
5、D
【解析】
首先根据每个小正方形的边长为1,结合勾股定理求出AB、AC、BC的长,进而判断A、C的正误;再判断较短的两边的平方和与较长边的平方是否相等,进而可判断B的正误;在上步提示的基础上,判断BC与AB是否存在二倍关系,进而即可判断D的正误.
【详解】
∵每个小正方形的边长为1,
根据勾股定理可得:AB=5,AC=2,BC=.
故A、C正确;
∵2+(2)2=52,
∴△ABC是直角三角形,
∴∠C=90°.
故B正确;
∵∠C=90°,AC=2BC,而非AB=2BC,
∴∠A≠30°.
故D错误.
故选D.
本题考查的是三角形,熟练掌握三角形是解题的关键.
6、A
【解析】
根据方差的定义,方差越小数据越稳定,故可选出正确选项.
【详解】
解:根据方差的意义,甲样本的方差大于乙样本的方差,故甲的波动比乙的波动大.
故选A.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
7、D
【解析】
根据不等式的基本性质进行判断。
【详解】
A. ∴,故A正确;
B. ,在不等式两边同时乘以(-1)则不等号改变,∴,故B正确;
C. ,在不等式两边同时乘以(-3)则不等号改变,∴,故C正确;
D. ,在不等式两边同时除以(-3)则不等号改变,∴,故D错误
所以,选项D不正确。
主要考查了不等式的基本性质:
1、不等式两边同时加(或减去)同一个数(或式子),不等号方向不变;
2、不等式两边同时乘以(或除以)同一个正数,不等号方向不变;
3、不等式两边同时乘以(或除以)同一个负数,不等号方向改变。
8、A
【解析】
根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.
故选A.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
根据正比例函数的定义即可求解.
【详解】
依题意得a-1=1,解得a=2
此题主要考查正比例函数的定义,解题的关键是熟知正比例函数的特点.
10、
【解析】
根据菱形的性质,得到AO=3,BO=4,AC⊥BD,由勾股定理求出AB,即可求出周长.
【详解】
解:∵四边形是菱形,
∴,,AC⊥BD,
∴△ABO是直角三角形,
由勾股定理,得
,
∴菱形的周长是:;
故答案为:20.
本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质进行求解.
11、
【解析】
由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.
解:∵分式有意义,
∴x-1≠2,即x≠1.
故答案为x≠1.
本题主要考查分式有意义的条件:分式有意义,分母不能为2.
12、2.
【解析】
根据异分母分式加减法法则将进行变形,继而由原等式恒成立得到关于A、B的方程组,解方程组即可得.
【详解】
,
又∵
∴,
解得,
∴A+B=2,
故答案为:2.
本题考查了分式的加减法,恒等式的性质,解二元一次方程组,得到关于A、B的方程组是解题的关键.
13、2.1
【解析】
根据已知得当AP⊥BC时,AP最短,同样AM也最短,从而不难根据相似比求得其值.
【详解】
连结AP,
在△ABC中,AB=6,AC=8,BC=10,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC,
∴四边形AFPE是矩形,
∴EF=AP.
∵M是EF的中点,
∴AM=AP,
根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,
∴当AP⊥BC时,△ABP∽△CAB,
∴AP:AC=AB:BC,
∴AP:8=6:10,
∴AP最短时,AP=1.8,
∴当AM最短时,AM=AP÷2=2.1.
故答案为2.1
解决本题的关键是理解直线外一点到直线上任一点的距离,垂线段最短,利用相似求解.
三、解答题(本大题共5个小题,共48分)
14、24
【解析】
连接AC,首先利用勾股定理的逆定理判断三角形ABC和三角形ACD的形状,再根据阴影部分的面积等于三角形ACD的面积减去三角形ABC的面积即可.
【详解】
连接AC,在中,根据勾股定理,.
.
.
.
.
本题主要考查三角形的勾股定理和勾股定理的逆定理的应用,特别注意三角形逆定理的应用.
15、(1)众数是7,中位数是7;(2)乙,理由见解析
【解析】
(1)观察表格可知甲运动员测试成绩的众数和中位数都是7分;
(2)易知=7,=7,=6.3,方差越小,成绩越稳定.根据方差的意义不难判断.
【详解】
(1)甲运动员测试成绩中7出现最多,故甲的众数为7;
甲成绩重新排列为:5、6、7、7、7、7、7、8、8、8,
∴甲的中位数为=7,
∴甲测试成绩的众数和中位数都是7分;
(2)=×(7+6+8+7+7+5+8+7+8+7)=7,
=×(6+6+7+7+7+7+7+7+8+8)=7,
=×(5×2+6×4+7×3+8×1)=6.3,
∵=,S甲2>S乙2,
∴选乙运动员更合适.
本题考查列表法、条形图、折线图、中位数、平均数、方差等知识,熟练掌握基本概念是解题的关键.
16、(1)EO⊥FO,EO=FO;理由见解析;(2)①;②=2
【解析】
(1)由正方形的性质可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可证△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可证EO⊥FO;
(2)①由等腰直角三角形的性质可得∠EOG的度数;
②由∠EOF=∠ABF=90°,可得点E,点O,点F,点B四点共圆,可得∠EOB=∠BFE,通过证明△BOH∽△BIO,可得,即可得结论.
【详解】
解:(1)OE=OF,OE⊥OF,连接AC,BD,
∵点O是正方形ABCD的中心
∴点O是AC,BD的交点
∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°
∵CF=BE,∠ABO=∠ACB,BO=CO,
∴△BEO≌△CFO(SAS)
∴OE=OF,∠BOE=∠COF
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°
∴∠EOF=90°,
∴EO⊥FO.
(2)
①∵OE=OF,OE⊥OF,
∴△EOF是等腰直角三角形,OG⊥EF
∴∠EOG=45°
②BH•BI的值是定值,
理由如下:
如图,连接DB,
∵AB=BC=CD=2
∴BD=2,
∴BO=
∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°
∴∠HBO=∠IBO=135°
∵∠EOF=∠ABF=90°
∴点E,点O,点F,点B四点共圆
∴∠EOB=∠BFE,
∵EF⊥OI,AB⊥HF
∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°
∴∠BFE=∠BIO,
∴∠BOE=∠BIO,且∠HBO=∠IBO
∴△BOH∽△BIO
∴
∴BH•BI=BO2=2
本题相似综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,证明△BOH∽△BIO是本题的关键.
17、(1)△DPE∽△QDA,证明见解析;(2)DP=2或5
【解析】
(1)由∠ADC=∠DEP=∠A=90可证明△ADQ∽△EPD;
(2)若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,当△ADQ∽△EPQ时,设EQ=x,则EP=2x,则DE=2−x,由△ADQ∽△EPD可得,可求出x的值,则DP可求出;同理当△ADQ∽△EQP时,设EQ=2a,则EP=a,可得,可求出a的值,则DP可求.
【详解】
(1)△ADQ∽△EPD,证明如下:
∵PE⊥DQ,
∴∠DEP=∠A=90,
∵∠ADC=90,
∴∠ADQ+∠EDP=90,∠EDP+∠DPE=90,
∴∠ADQ=∠DPE,
∴△ADQ∽△EPD;
(2)∵AB=4,点Q为AB的中点,
∴AQ=BQ=2,
∴DQ=,
∵∠PEQ=∠A=90,
∴若以点P,E,Q为顶点的三角形与△ADQ相似,有两种情况,
①当△ADQ∽△EPQ时,,
设EQ=x,则EP=2x,则DE=2−x,
由(1)知△ADQ∽△EPD,
∴,
∴,
∴x=
∴DP==5;
②当△ADQ∽△EQP时,设EQ=2a,则EP=a,
同理可得,
∴a=,
DP=.
综合以上可得DP长为2或5,使得以点P,E,Q为顶点的三角形与△ADQ相似.
本题考查了相似三角形的判定与性质,勾股定理,正方形的性质,熟练掌握相似三角形的判定与性质是解题的关键.
18、(1)5,1;(2)y=4x+2;(3)甲农户的购买量为4.2千克.
【解析】
(1)由表格即可得出购买量为函数的自变量x,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,根据点的坐标利用待定系数法即可求出函数解析式;
(3)由18.8>10,利用“购买量=钱数÷单价”即可得出甲农户的购买了,再将y=18.8代入(2)的解析式中即可求出农户的购买量.
【详解】
解:(1)由表格即可得出购买量是函数的自变量x,
∵10÷2=5,
∴a=5,b=2×5+5×0.8=1.
故答案为:5,1;
(2)设当x>2时,y关于x的函数解析式为y=kx+b,
将点(2.5,12)、(3,1)代入y=kx+b中,
得:,
解得:,
∴当x>2时,y关于x的函数解析式为y=4x+2.
(3)∵18.8>10,
4x+2=18.8
x=4.2
∴甲农户的购买量为:4.2(千克).
答:甲农户的购买量为4.2千克.
本题考查了一次函数的应用以及待定系数法求出函数解析式,观察函数图象找出点的坐标再利用待定系数法求出函数解析式是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1或11
【解析】
根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.
【详解】
∵B(-3,0),C(9,0)∴BC=12
∵点E是BC的中点∴BE=CE=6
∵AD∥BC∴AD=5
∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:
当点P在点E左边时,PB=BE-PE=6-5=1;
②当点P 在点E右边时,PB=BE+PE=6+5=11
综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.
本题考查了平行四边形的性质,注意分类讨论思想的运用.
20、1或
【解析】
分①2是直角边,利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答;②2是斜边时,根据直角三角形斜边上的中线等于斜边的一半解答.
【详解】
①若2是直角边,则斜边=,
斜边上的中线=,
②若4是斜边,则斜边上的中线=,
综上所述,斜边上的中线长是1或.
故答案为1或.
本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,难点在于分情况讨论.
21、1
【解析】
由于数据2、1、1、4、x的平均数是1,由此利用平均数的计算公式可以求出x,再根据众数的定义求出这组数的众数即可.
【详解】
∵数据2、1、1、4、x的平均数是1,
∴2+1+1+4+x=1×5,
∴x=1,
则这组数据的众数即出现最多的数为1.
故答案为:1.
此题考查平均数和众数的概念.解题关键在于注意一组数据的众数可能不只一个.
22、
【解析】
先用树状图将所有可能的情况列出来,然后找到恰好选中化学、生物两科的情况数,然后利用概率公式等于恰好选中化学、生物两科的情况数与总情况数之比即可求解.
【详解】
设思想政治、地理、化学、生物(分别记为A、B、C、D),
画树状图如图所示,
由图可知,共有12种等可能结果,其中该同学恰好选中化学、生物两科的有2种结果,
所以该同学恰好选中化学、生物两科的概率为=.
故答案为: .
本题主要考查树状图或列表法求随机事件的概率,掌握树状图或列表法及概率公式是解题的关键.
23、12
【解析】
如图,连接AC、BD交于点O′,利用中点坐标公式,构建方程求出a、b即可;
【详解】
解:如图,连接AC、BD交于点O′.
∵四边形ABCD是平行四边形,
∴AO′=O′C,BO′=O′D,
∵A(3,a),B(2,2),C(b,3),D(8,6),
∴,
∴a=5,b=7,
∴a+b=12,
故答案为:12
此题考查坐标与图形的性质,解题关键在于构建方程求出a、b
二、解答题(本大题共3个小题,共30分)
24、4小时.
【解析】
本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.
【详解】
解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
根据题意得:
解得x=4
经检验,x=4原方程的根,
答:客车由高速公路从甲地到乙地需4时.
本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.
25、见解析
【解析】
首先证明Rt△BDE≌Rt△CDF,可得DE=DF,再根据到角的两边的距离相等的点在角的平分线上可得AD是∠EAC的平分线.
【详解】
证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,
∴∠BED=∠CFD=90°
在Rt△BDE和Rt△CDF中,,
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,
∵DE⊥AB的延长线于点E,DF⊥AC于点F,
∴AD是∠BAC的平分线.
此题主要考查了角平分线的判定,关键是掌握到角的两边的距离相等的点在角的平分线上.
26、.
【解析】
根据题目中的数据可以求得该三角形的周长
【详解】
解:∵这个三角形的三边长分别为: ,
∴这个三角形的周长是:=.
本题考查二次根式的性质与化简,解答本题的关键是明确二次根式的意义.
题号
一
二
三
四
五
总分
得分
批阅人
购买量x(千克)
1.5
2
2.5
3
付款金额y(元)
7.5
10
12
b
相关试卷
这是一份2025届江苏省扬州市江都区邵樊片数学九年级第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份江苏省扬州市江都区邵凡片2023-2024学年九上数学期末考试试题含答案,共8页。试卷主要包含了已知反比例函数y=等内容,欢迎下载使用。
这是一份2023-2024学年江苏省扬州市江都区邵樊片九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,如图所示的工件,其俯视图是,方程的两根分别为等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)