2025届江苏省盐城市大丰区实验初级中学数学九年级第一学期开学达标检测试题【含答案】
展开这是一份2025届江苏省盐城市大丰区实验初级中学数学九年级第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)图中两直线L1,L2的交点坐标可以看作方程组( )的解.
A.B.C.D.
2、(4分)一个多边形的每一个外角都等于它相邻的内角的一半,则这个多边形的边数是( )
A.3B.4C.5D.6
3、(4分)如图,在中,的平分线交于,若,,则的长度为( )
A.B.C.D.
4、(4分)点到轴的距离为( )
A.3B.4C.5D.
5、(4分)已知分式的值等于零,则x的值为( )
A.﹣2B.﹣3C.3D.±3
6、(4分)若菱形ABCD的两条对角线长分别为6和8,则此菱形的面积为( )
A.5B.12C.24D.48
7、(4分)如图,四边形ABCD与四边形AEFG是位似图形,且AC:AF=2:3,则下列结论不正确的是( )
A.四边形ABCD与四边形AEFG是相似图形
B.AD与AE的比是2:3
C.四边形ABCD与四边形AEFG的周长比是2:3
D.四边形ABCD与四边形AEFG的面积比是4:9
8、(4分)如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()
A.1B.C.D.2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在▱ABCD中,分别设P,Q,E,F为边AB,BC,AD,CD的中点,设T为线段EF的三等分点,则△PQT与▱ABCD的面积之比是______.
10、(4分)在菱形中,已知,,那么__________(结果用向量,的式子表示).
11、(4分)用科学记数法表示:__________________.
12、(4分)将直线向上平移3个单位长度与直线重合,则直线的解析式为__________.
13、(4分)若,则分式_______.
三、解答题(本大题共5个小题,共48分)
14、(12分)求证:取任何实数时,关于的方程总有实数根.
15、(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下:
请根据调查的信息分析:
(1)求活动启动之初学生“一周诗词诵背数量”的中位数;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
16、(8分)已知:如图1,在中,点为对角线的中点,过点的直线分别交边、于点、,过点的直线分别交边、于点、,且.
(1)求证:四边形为平行四边形;
(2)如图2,当四边形为矩形时,求证:.
17、(10分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.
若购买者一次性付清所有房款,开发商有两种优惠方案:
(方案一)降价8%,另外每套房赠送a元装修基金;
(方案二)降价10%,没有其他赠送.
(1)请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;
(2)老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
18、(10分)(1)解分式方程:
(2)解不等式组,并在数轴上表示其解集.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
20、(4分)如图所示,AB=BC=CD=DE=EF=FG,∠1=125°,则∠A=_____度.
21、(4分)若a、b,c为三角形的三边,则________。
22、(4分)若∠BAC=30°,AP平分∠BAC,PD∥AC,且PD=6,PE⊥AC,则PE=________.
23、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是_____米(平面镜的厚度忽略不计).
25、(10分)阅读下面的情景对话,然后解答问题:
老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
小明:那直角三角形是否存在奇异三角形呢?
小红:等边三角形一定是奇异三角形.
(1)根据“奇异三角形”的定义,小红得出命题:“等边三角形一定是奇异三角形”,则小红提出的命题是 .(填“真命题”或“假命题”)
(2)若是奇异三角形,其中两边的长分别为、,则第三边的长为 .
(3)如图,中,,以为斜边作等腰直角三角形,点是上方的一点,且满足.求证:是奇异三角形.
26、(12分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.
(1)求正比例函数和一次函数的表达式;
(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;
(3)求出的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
分析:
根据图中信息分别求出直线l1和l2的解析式即可作出判断.
详解:
设直线l1和l2的解析式分别为,根据图中信息可得:
, ,
解得: ,,
∴l1和l2的解析式分别为,即,,
∴直线l1和l2的交点坐标可以看作方程 的交点坐标.
故选B.
点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.
2、D
【解析】
先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的310°,从而可代入公式求解.
【详解】
解:设多边形的一个内角为2x度,则一个外角为x度,依题意得
2x+x=180°,
解得x=10°.
310°÷10°=1.
故这个多边形的边数为1.
故选D.
本题考查了多边形的内角与外角关系、方程的思想,记住多边形的一个内角与外角互补、及外角和的特征是关键.
3、B
【解析】
由角平分线的定义和平行四边形的性质可求得∠ABE=∠AEB ,易得AB=AE.
【详解】
解:∵四边形ABCD为平行四边形,
∴AB=CD=3,AD∥BC,
∴∠AEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=3,
故选:B.
本题主要考查平行四边形的性质,利用平行线的性质和角平分线的定义求得∠ABE=∠AEB是解题的关键.
4、A
【解析】
根据点到y轴的距离是点的横坐标的绝对值,可得答案.
【详解】
解:点的坐标(3,-4),它到y轴的距离为|3|=3,
故选:A.
本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.
5、D
【解析】
根据分式的值为零的条件可以求出的值.分式的值是1的条件是,分子为1,分母不为1.
【详解】
解:且
且.
故选:.
本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.
6、C
【解析】
根据菱形的面积等于对角线乘积的一半计算即可.
【详解】
菱形的面积为:6×8÷2=24.
故选C.
本题考查了菱形的性质,菱形的性质有:具有平行四边形的性质;菱形的四条边相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于对角线乘积的一半,菱形是轴对称图形,它有两条对称轴.
7、B
【解析】
∵四边形ABCD与四边形AEFG是位似图形;
A、四边形ABCD与四边形AEFG一定是相似图形,故正确;
B、AD与AG是对应边,故AD:AE=2:3;故错误;
C、四边形ABCD与四边形AEFG的相似比是2:3,故正确;
D、则周长的比是2:3,面积的比是4:9,故正确.
故选B.
8、C
【解析】
由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设A′G=x,由勾股定理即可得:x2+4=(4-x)2,解此方程即可求得答案.
【详解】
∵四边形ABCD是矩形,
∴
∴
由折叠的性质,可得:A′D=AD=3,A′G=AG,
∴A′B=BD−A′D=5−3=2,
设A′G=x,
则AG=x,BG=AB−AG=4−x,
在Rt△A′BG中,
∴
解得:
∴
故选:C.
考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1:1
【解析】
如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S,证明四边形EFQP是平行四边形,求出S平行四边形EFQP=1S和S△TPQ=2S即可解决问题.
【详解】
解:如图,连接AC、PE、QF.设平行四边形ABCD的面积为8S.
∵DE=AE,DF=FC,
∴EF∥AC,EF:AC=1:2,
∴S△DEF=S△DAC=×1S=S,
同理可证PQ∥AC,PQ:AC=1:2,S△CFQ=S△PQB=S△APE=S,
∴四边形EFQP是平行四边形,
∴S平行四边形EFQP=1S,
∴S△TPQ=S平行四边形EFQP=2S,
∴S△TPQ:S平行四边形ABCD=2S:8S=1:1,
故答案为1:1.
本题考查的是平行四边形的综合运用,熟练掌握平行四边形的性质和相似三角形的性质是解题的关键.
10、
【解析】
根据菱形的性质可知,,然后利用即可得出答案.
【详解】
∵四边形是菱形,
∴,
∵,,
∴
∴
故答案为:.
本题主要考查菱形的性质及向量的运算,掌握菱形的性质及向量的运算法则是解题的关键.
11、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10 ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
故答案为.
此题考查科学记数法,解题关键在于掌握一般形式.
12、
【解析】
根据一次函数的平移规律:左加右减,上加下减,即可求出原直线的解析式.
【详解】
解:∵直线向上平移3个单位长度与直线重合,
∴直线向下平移3个单位长度与直线重合
∴直线的解析式为:
故答案为:.
此题考查的是根据平移后的一次函数解析式,求原直线的解析式,掌握一次函数的平移规律:左加右减,上加下减,是解决此题的关键.
13、
【解析】
先把化简得到,然后把分式化简,再把看作整体,代入即可.
【详解】
∵,化简可得:,
∵,
把代入,得:
原式=;
故答案为:.
本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
由a是二次项的系数,分a=0及两种情况分别确定方程的根的情况即可得到结论.
【详解】
当时,方程为,;
当,方程为一元二次方程,
,原方程有实数根.
综上所述,取任何值时,原方程都有实数根.
此题考查方程的根的情况,正确理解题意分情况解答是解题的关键.
15、 (1)6;(2) 930人;(3) 经典诗词诵背系列活动效果好,理由见解析
【解析】
(1)根据中位数的定义进行解答,即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);
(2)用总人数乘以大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数所占的百分比即可;
(3)根据活动初的平均数、中位数与活动后的平均数、中位数进行比较,即可得出答案.
【详解】
(1)∵把这些数从小到大排列,最中间的数是第20和21个数的平均数,则中位数是(首);
(2)根据题意得:
(人),
估计大赛后一个月该校学生一周诗词背6首(含6首)以上的人数为930人.
(3)①活动初40名学生平均背诵首数为(首),
活动1个月后40名学生平均背诵首数为(首);
②活动初学生一周诗词诵背数量中位数为6,活动一个月后学生一周诗词诵背数量中位数为7;
根据以上数据分析,该校经典诗词诵背系列活动效果好.
考查条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
16、(1)证明见解析;(2)证明见解析.
【解析】
(1)只要证明,即可解决问题;
(2)由已知可证明,从而可得,,进而可得,由线段加减即可解决问题.
【详解】
(1)证明:∵四边形为平行四边形,
∴.
∴.
∵点为对角线的中点,
∴.
∵,
∴(ASA).
∴.
同理
∴四边形为平行四边形.
(2)证明:∵四边形为矩形,
∴,且,.
∴.
又∵,.
∴(ASA).
∴,.
∴.
∴.
即.
本题考查了四边形综合,涉及了矩形的性质、平行四边形的判定和性质、三角形全等的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
17、(1) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算.
【解析】
解:(1)当1≤x≤8时,每平方米的售价应为:
y=4000﹣(8﹣x)×30="30x+3760" (元/平方米)
当9≤x≤23时,每平方米的售价应为:
y=4000+(x﹣8)×50=50x+3600(元/平方米).
∴
(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米),
按照方案一所交房款为:W1=4400×120×(1﹣8%)﹣a=485760﹣a(元),
按照方案二所交房款为:W2=4400×120×(1﹣10%)=475200(元),
当W1>W2时,即485760﹣a>475200,
解得:0<a<10560,
当W1<W2时,即485760﹣a<475200,
解得:a>10560,
∴当0<a<10560时,方案二合算;当a>10560时,方案一合算.
本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.
18、(1)原方程无解;(2)x≤1,数轴见解析;
【解析】
(1)利用解分式方程的一般步骤求解即可.
(2)求出两个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.
【详解】
(1)去分母,方程两边同时乘以(x-3),可得: x-2=2(x-3)+1,
去括号可得:x-2=2x-6+1,
解得x=3,
检验:当x=3时,x-3=0,
∴x=3是分式方程的增根,原方程无解.
(2)解: ,
∵解不等式①得:x≤1,
解不等式②得:x<4,
∴不等式组的解集为:x≤1,
在数轴上表示不等式组的解集为:
.
此题考查解分式方程,解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、60
【解析】
试题分析:根据线段垂直平分线得出BE=CE,推出∠B=∠BCE=40°,求出∠ACB=2∠BCE=80°,代入∠A=180°-∠B-∠ACB=60°.
考点:线段垂直平分线的性质
20、1
【解析】
设∠A=x.根据等腰三角形的性质和三角形的外角的性质,得∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FCE=∠FEC=5x,则180°﹣5x=130°,即可求解.
【详解】
设∠A=x,
∵AB=BC=CD=DE=EF=FG,
∴根据等腰三角形的性质和三角形的外角的性质,得
∠CDB=∠CBD=2x,∠DEC=∠DCE=3x,∠DFE=∠EDF=4x,∠FGE=∠FEG=5x,
则180°﹣5x=125°,
解,得x=1°,
故答案为1.
本题考查了等腰三角形的性质和三角形的外角的性质的运用;发现并利用∠CBD是△ABC的外角是正确解答本题的关键.
21、2a
【解析】
根据三角形三条边的长度关系,可以得到两个括号内的正负情况;再根据一个数先平方,后开方,所得的结果是这个数的绝对值,来计算这个式子.
【详解】
∵a,b,c是三角形的三边,
三角形任意两边之和大于第三边,任意两条边之差小于第三边,
∴a+b-c>0,b-c-a<0,
所以==.
本题主要考查了三角形三边的边长关系:三角形任意两条边之和大于第三边,任意两条边之差小于第三边.解决本题,还需要清楚地明白一个数先平方后开方,所得的就是这个数的绝对值.
22、1
【解析】
分析:过P作PF⊥AB于F,根据平行线的性质可得∠FDP=∠BAC=10°,再根据10度所对的边是斜边的一半可求得PF的长,最后根据角平分线的性质即可求得PE的长.
详解:过P作PF⊥AB于F.∵PD∥AC,∴∠FDP=∠BAC=10°,∴在Rt△PDF中,PF=PD=1.
∵AP平分∠BAC,PE⊥AC于E,PF⊥AB于F,∴PE=PF=1.
故答案为1.
点睛:本题考查了角平分线的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,平行线的性质,熟记性质是解题的关键.
23、7.9
【解析】
分析:根据平均数的定义进行求解即可得.
详解:由题意得:
故答案为
点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、1
【解析】
试题分析:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==1(米).故答案为1.
考点:相似三角形的应用.
25、(1)真命题;(2); (3)见解析
【解析】
分析:(1)根据题中所给的奇异三角形的定义直接进行判断即可;
(2)分第三条边是斜边或直角边两种情况,再根据勾股定理求出第三条边长;
(3)由勾股定理得,AC2+CB2=AB2,由△ABD是等腰直角三角形得AB2=2AD2,结合已知条件可得结论.
详解:(1)设等边三角形的边长为a,
∵a2+a2=2a2,
∴等边三角形一定是奇异三角形,
∴“等边三角形一定是奇异三角形”,是真命题;
(2)分两种情况:
①当为斜边时,第三边长=,
②当2和分别为直角边时,第三边长为<,故不存在,
因此,第三边长为:;
(3)∵△ACB是直角三角形,且∠ACB=90°,
∴AC2+CB2=AB2,
∵△ADB是等腰直角三角形,
∴AB2=2AD2,
∴AC2 =AB2-CB2,
∴AC2 =2AD2-CB2,
∵AE=AD,CE=CB,
∴AC2+CB2=2AD2-CB2+CB2=2AD2=2CE2.
∴是奇异三角形.
点睛:本题考查了奇异三角形的定义、等边三角形的性质、勾股定理;熟练掌握等边三角形的性质和勾股定理,在解答(2)时要注意分类讨论.
26、(1);;(2)图详见解析;(3)3
【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;
(2)根据题意描出相应的点,再连线即可;
(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.
【详解】
解:(1)把A(1,2)代入中,得,
∴正比例函数的表达式为;
把A(1,2),B(3,0)代入中,得
,
解得:,
所以一次函数的表达式为;
(2)如图所示.
(3)由题意可得:.
本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.
题号
一
二
三
四
五
总分
得分
一周诗词诵背数量
3首
4首
5首
6首
7首
8首
人数
1
3
5
6
10
15
相关试卷
这是一份2025届江苏省盐城市大丰区大丰区万盈镇沈灶初级中学数学九年级第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省盐城市大丰区大丰区万盈镇沈灶初级中学数学九年级第一学期开学统考试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省江苏省大丰市万盈初级中学数学九年级第一学期开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。