2025届江苏省南通市田家炳中学数学九上开学联考模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为( )
A.4cm2B.5cm2C.20cm2D.30cm2
2、(4分)若点P(a,b)在第二象限内,则a,b的取值范围是( )
A.a<0,b>0B.a>0,b>0C.a>0,b<0D.a<0,b<0
3、(4分)若bk>0,则直线y=kx-b一定通过( )
A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限
4、(4分)一次考试考生约2万名,从中抽取500名考生的成绩进行分析,这个问题的样本是( )
A.500B.500名C.500名考生D.500名考生的成绩
5、(4分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为51和38,则△EDF的面积为( )
A.6.5B.5.5C.8D.13
6、(4分)已知:如图,是正方形内的一点,且,则的度数为( )
A.B.C.D.
7、(4分)若分式的值为零,则的值为( )
A.B.C.D.
8、(4分)下列四个图形中,既是轴对称又是中心对称的图形是( )
A.4个B.3个C.2个D.1个
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)2018年3月全国两会政府工作报告进一步强调“房子是用来住的,不是用来炒的”定位,继续实行差别化调控。这一年被称为史上房地产调控政策最密集、最严厉的年份。因此,房地产开发公司为了缓解年终资金周转和财务报表的压力,通常在年底大量促销。重庆某房地产开发公司一方面在“高层、洋房、别墅”三种业态的地产产品中作特价活动;另一方面,公司制定了销售刺激政策,对卖出特价的员工进行个人奖励:每卖出一套高层特价房奖励1万元,每卖出一套洋房特价房奖励2万元,每卖出一套别墅特价房奖励4万元.公司将销售人员分成三个小组,经统计,第一组平均每人售出6套高层特价房、4套洋房特价房、3套别墅特价房;第二组平均每人售出2套高层特价房、2套洋房特价房、1套别墅特价房;第三组平均每人售出8套高层特价房、5套洋房特价房。这三组销售人员在此次活动中共获得奖励466万元,其中通过销售洋房特价房所获得的奖励为216万元,且第三组销售人员的人数不超过20人。则第三组销售人员的人数比第一组销售人员的人数多___人.
10、(4分)如图,在R△ABC中,∠ABC=90°,AB=2,BC=1,BD是AC边上的中线,则BD= ________。
11、(4分)在,,,,中任意取一个数,取到无理数的概率是___________.
12、(4分)将一次函数y=﹣2x﹣1的图象向上平移3个单位,则平移后所得图象的解析式是_____.
13、(4分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)
(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?
(2)通过计算,你认为哪一家生产皮具的质量比较稳定?
15、(8分)有一块田地的形状和尺寸如图所示,求它的面积.
16、(8分)网格是由边长为1的小正方形组成,点A,B,C位置如图所示,若点,.
(1)建立适当的平面直角坐标系,并写出点C坐标(______,______);点B到x轴的距离是______,点C到y轴的距离是______;
(2)在平面直角坐标系中找一点D,使A,B,C,D为顶点的四边形的所有内角都相等,再画出四边形ABCD.
(3)请你说出线段AB经过怎样的变换得到线段DC的?
17、(10分)因式分解:2
18、(10分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为 的比例计入每人的最后总分,有4位应聘者的得分如下所示:
(1)写出4位应聘者的总分;
(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在△ABC中,BC=a.作BC边的三等分点C1,使得CC1:BC1=1:2,过点C1作AC的平行线交AB于点A1,过点A1作BC的平行线交AC于点D1,作BC1边的三等分点C2,使得C1C2:BC2=1:2,过点C2作AC的平行线交AB于点A2,过点A2作BC的平行线交A1C1于点D2;如此进行下去,则线段AnDn的长度为______________.
20、(4分)如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)
21、(4分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆,且AB大于AD.设AD为xm,依题意可列方程为______.
22、(4分)如图所示,已知AB= 6,点C,D在线段AB上,AC =DB = 1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.
23、(4分)如图,菱形ABCD的边长为8, ,点E、F分别为AO、AB的中点,则EF的长度为________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)
25、(10分)先化简,再求值: ,其中a=3
26、(12分)已知,在中,,于点,分别交、于点、点,连接,若.
(1)若,求的面积.
(2)求证:.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到 ,故可求的CD的长,进而求出正方形的面积.
【详解】
过D作直线EF与l2垂直,交l1与点E,交l4于点F.
,即
四边形ABCD为正方形
在和中
即正方形的面积为20
故选C.
本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.
2、A
【解析】
点在第二象限的条件是:横坐标是负数,纵坐标是正数.
【详解】
解:因为点P(a,b)在第二象限,
所以a<0,b>0,
故选A.
本题考查了平面直角坐标系中各象限点的坐标的符号特征,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
3、D
【解析】
根据题意讨论k和b的正负情况,然后可得出直线y=kx-b一定通过哪两个象限.
【详解】
解:由bk>0,知,①b>0,k>0;②b<0,k<0;
①b>0,k>0时,直线经过第一、三、四象限,
②b<0,k<0时,直线经过第一、二、四象限.
综上可得,函数一定经过一、四象限.
故选:D.
本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.
4、D
【解析】
样本是指从总体中抽取的部分个体,据此即可判断
【详解】
由题可知,所考查的对象为考生的成绩,所以从总体中抽取的部分个体为500名考生的成绩.
故答案为:D
本题考查了样本的概念,明确题中考查的对象是解题的关键.
5、A
【解析】
过点D作DH⊥AC于H,利用角平分线的性质得到DF=DH,将三角形EDF的面积转化为三角形DGH的面积来求.
【详解】
如图,过点D作DH⊥AC于H,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DH,
在Rt△DEF和Rt△DGH中,
∴Rt△DEF≌Rt△DGH(HL),
∴S△DEF=S△DGH,
∵△ADG和△AED的面积分别为51和38,
∴△EDF的面积=.
故选A.
本题考查的知识点是角平分线的性质及全等三角形的判定及性质,解题关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.
6、D
【解析】
利用等边三角形和正方形的性质求得,然后利用等腰三角形的性质求得的度数,从而求得的度数,利用三角形的内角和求得的度数.
【详解】
解:,
是等边三角形,
,
,
,
,
,
同理可得,
,
故选:.
本题考查了正方形的性质及等边三角形的性质,解题的关键是根据等腰三角形的性质求得有关角的度数,难度不大.
7、C
【解析】
直接利用分式的值为零则分子为零,分母不为零,进而得出答案.
【详解】
解:∵分式的值为零,
∴x2−1=0且x2+x−2≠0,
解得:x=−1.
故选:C.
此题主要考查了分式的值为零的条件,正确解方程是解题关键.
8、C
【解析】
根据轴对称图形与中心对称图形的概念结合各图形的特点求解.
【详解】
①是轴对称图形,也是中心对称图形,符合题意;
②是轴对称图形,不是中心对称图形,不符合题意;
③是轴对称图形,是中心对称图形,符合题意;
④轴对称图形,不是中心对称图形,不符合题意.
综上可得①③符合题意.
故选:C.
考查了中心对称图形与轴对称图形的识别.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、9
【解析】
假设第一组有x人,第二组y人,第三组z人,那么销售高层特价房共获奖励可表示为1×(6x+2y+8z)万元,销售洋房特价房共获奖励可表示为2×(4x+2y+5z)万元,销售别墅特价房共获奖励4×(3x+y)万元.
【详解】
设第一组有x人,第二组y人,第三组z人,依题意列三元一次方程组:
化简①得 18x+6y+8z=250 ④
化简②得 4x+2y+5z=108 ⑤
由④-⑤得 14x+4y+3z=142 ⑥
由④×2-⑥×3得-6x+7z=74 ⑦
即z+6(z-x)=74
由z≤20得 74-6(z-x)≤20
解得z-x≥9
故第三组销售人员的人数比第一组销售人员的人数多 9人.
此题考查三元一次方程组的应用,解题关键在于列出方程.
10、1.5
【解析】
利用勾股定理求出AC的长,再根据直角三角形斜边上的中线等于斜边的一半,就可求出BD的长.
【详解】
解:在Rt△ABC中,
AC=
∵ BD是AC边上的中线,
∴AC=2BD
∴BD=3÷2=1.5
故答案为:1.5
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.
11、
【解析】
直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.
【详解】
解:∵在,,,,中无理数只有这1个数,
∴任取一个数,取到无理数的概率是,
故答案为:.
此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.
12、y=﹣1x+1
【解析】
根据平移法则上加下减可得出解析式.
【详解】
由题意得:平移后的解析式为:y=﹣1x﹣1+3=﹣1x+1.
故答案为:y=﹣1x+1.
本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.
13、
【解析】
设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A的坐标,利用待定系数法确定出解析式即可.
【详解】
设A坐标为(x,y),
∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,
∴x+5=0+3,y+0=0-3,
解得:x=-2,y=-3,即A(-2,-3),
设过点A的反比例解析式为y=,
把A(-2,-3)代入得:k=6,
则过点A的反比例解析式为y=,
故答案为y=.
此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、 (1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.
【解析】
(1)求出记录的质量总和,再加上标准质量即可;
(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.
【详解】
解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),
乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);
(2)∵=×(﹣3+0+0+1+2+0)=0,
∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,
∵=×(﹣2+1﹣1+0+1+1)=0,
∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,
∵<,
∴乙公司生产皮具的质量比较稳定.
本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.
15、面积为1.
【解析】
在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.
【详解】
解:连接AC,
在Rt△ACD中,AC为斜边,
已知AD=4,CD=3,
则AC==5,
∵AC2+BC2=AB2,
∴△ABC为直角三角形,
∴S四边形ABCD=S△ABC﹣S△ACD=AC•CB﹣AD•DC=1,
答:面积为1.
本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC为直角三角形是解题的关键.
16、(1)平面直角坐标系如图所示,(3,1),3,3; (2)如图所示;见解析; (3)线段AB向右平移4个单位,再向下平移2个单位得到线段DC.(答案不唯一)
【解析】
(1)根据坐标与图形性质,由A,B即可推出C的坐标,即可解答
(2)根据矩形的性质,画出图形即可解答
(3)利用平移的性质,即可解答
【详解】
(1)平面直角坐标系如图所示,(3,1),3,3;
(2)如图所示;
(3)线段AB向右平移4个单位,再向下平移2个单位得到线段DC.(答案不唯一)
此题考查作图-基本作图,平移的性质,解题关键在于掌握作图法则
17、2(a-b)2
【解析】
先提公因式在利用公式法进行因式分解即可.
【详解】
解:原式=2(a2-2ab+b2)
=2(a-b)2
本题考查的是因式分解,能够熟练运用多种方法进行因式分解是解题的关键.
18、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解
【解析】
(1)求四位应聘者总分只需将各部分分数按比例相加即可;
(2)根据方差的意义分析即可.
【详解】
解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;
应聘者B总分为85×50%+85×30%+70×20%=82分;
应聘者C总分为80×50%+90×30%+70×20%=81分;
应聘者D总分为90×50%+90×30%+50×20%=82分;
(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.
本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.
【详解】
∵A1C1∥AC,A1D1∥BC,
∴四边形A1C1CD1为平行四边形,
∴A1D1=C1C=a=,
同理,四边形A2C2C1D2为平行四边形,
∴A2D2=C1C2=a=,
……
∴线段AnDn=,
故答案为:.
本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.
20、或
【解析】
根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.
【详解】
由勾股定理得,AD=,
3<<4,
(同理可求BD=)
故答案为:AD或BD.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
21、(无需写成一般式)
【解析】
根据AD=xm,就可以得出AB=38-x,由矩形的面积公式结合矩形是“优美矩形”就可以得出关于x的方程.
【详解】
∵AD=xm,且AB大于AD,
∴AB=38-x,
∵矩形ABCD是“优美矩形”,
∴
整理得:.
故答案为:.
考查了根据实际问题列一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.
22、1
【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN==1,
∴点G移动路径的长是1,
故答案为:1.
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.
23、2
【解析】
先根据菱形的性质得出∠ABO=∠ABC=30°,由30°的直角三角形的性质得出OA=AB=4,再根据勾股定理求出OB,然后证明EF为△AOB的中位线,根据三角形中位线定理即可得出结果
【详解】
∵四边形ABCD是菱形,
∴AC⊥BD,∠ABO=∠ABC=30°,
∴OA=AB=4,
∴OB= ,
∵点E、F分别为AO、AB的中点,
∴EF为△AOB的中位线,
∴EF=OB=2.
故答案是:2 .
考查了矩形的性质、勾股定理、含30°角的直角三角形的性质以及三角形中位线定理;根据勾股定理求出OB和证明三角形中位线是解决问题的关键.
二、解答题(本大题共3个小题,共30分)
24、不能通过,理由见解析
【解析】
直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.
【详解】
不能通过.
如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,
∵AB=3.3m,CA=0.7m,BF=2.5m,
∴CF=AB﹣BF+CA=1.5m,
∵∠ECA=60°,∠CGF=30°
∴CG=2CF=3m,
∴GF=≈2.55(m),
∵2.55<3
∴这辆货车在不碰杆的情况下,不能从入口内通过.
此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.
25、
【解析】
根据分式的运算法则及运算顺序,把所给的分式化为最简分式,再代入求值即可.
【详解】
原式=
当 时,原式=
本题考查了分式的化简求值,根据分式的运算法则及运算顺序,把所给的分式化为最简分式是解决问题的关键.
26、(1)72;(2)见解析.
【解析】
(1)由得AB=CD,AD=BC,AB∥CD,则∠BAG=∠ACE,由得∠ACE+∠EAC=90°,则∠BAG+∠EAC=∠BAE =90°,由,可证得∠AFB=∠ACE,又因为BF=BC,可得BF=AC,可证△ABF≌△EAC,则AB=AE,的面积=AE∙CD=,在Rt△ABE中,由BE=12即可求得;
(2)由(1)知:△ABF≌△EAC,得△EAD≌△EAC,设CE=x,则AB=CD=2x,BF=AD=x,根据面积法计算AG的长,作高线GH,利用三角函数分别得EH和GH的长,利用勾股定理计算EG的长,代入结论化简可得结论.
【详解】
(1)解:∵,
∴AB=CD,AD=BC,AB∥CD,
∴∠BAG=∠ACE,
∵,
∴∠ACE+∠EAC=90°,
∴∠BAG+∠EAC=∠BAE =90°,
∵,,
∴∠AFB=∠ACE,∠AEC =∠BAE =90°,
∵BF=BC,,
∴BF=AC,
∴△ABF≌△EAC,
∴AB=AE,
∴的面积=AE∙CD=,
在Rt△ABE中, BE=12
∴2= =72,
∴的面积=72;
(2)证明:由(1)知:△ABF≌△EAC,
∵BF=BC=AD,
∴△EAD≌△EAC,
∴AF=DE=CE,AE=AB=2CE,
设CE=x,则AB=CD=2x,BF=AD=x,,
S△ABF=BF•AG=AF•AB,
x•AG=x•2x,
∴AG=x,
∴CG=x-x=x,
过G作GH⊥CD于H,
sin∠ECG== ,
∴GH=x,
cs∠ECG== ,
CH=x,
∴EH=x-x=,
∴EG== = ,
∴= = ,
∴GE=AG.
故答案为(1)72;(2)见解析.
本题考查平行四边形的性质、直角三角形的判定和性质,勾股定理、三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形,熟练掌握勾股定理与三角函数定义.
题号
一
二
三
四
五
总分
得分
厂家
超过标准质量的部分
甲
﹣3
0
0
1
2
0
乙
﹣2
1
﹣1
0
1
1
项目
得分
应聘者
专业知识
英语水平
参加社会实践与社团活动等
A
85
85
90
B
85
85
70
C
80
90
70
D
80
90
50
2025届江苏省南通市八一中学数学九上开学检测试题【含答案】: 这是一份2025届江苏省南通市八一中学数学九上开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省泰兴市西城中学数学九上开学联考模拟试题【含答案】: 这是一份2024年江苏省泰兴市西城中学数学九上开学联考模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南通田家炳中学数学九上开学复习检测试题【含答案】: 这是一份2024年江苏省南通田家炳中学数学九上开学复习检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。