2025届江苏省南通市东方中学数学九年级第一学期开学经典试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)若是关于的一元二次方程的一个解,则2035-2a+b的值( )
A.17B.1026C.2018D.4053
2、(4分)如图,函数y=kx与y=ax+b的图象交于点P(-4,-2).则不等式kx<ax+b的解集是( )
A.x<-2B.x>-2C.x<-4D.x>-4
3、(4分)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是( )
A.B.C.2D.
4、(4分)如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD、BD、BC、AC的中点,要使四边形EFGH是矩形,则四边形ABCD需要满足的条件是
A.B.C.D.
5、(4分)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为( )
A.40mB.80mC.160mD.不能确定
6、(4分)如图所示,在数轴上点A所表示的数为,则的值为( )
A.B.C.D.
7、(4分)下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,…,按此规律,第⑥个图形中矩形的个数为( )
A.31B.30C.28D.25
8、(4分)如图,绕点逆时针旋转得到,若,,则的度数是( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)反比例函数 y=的图象同时过 A(-2,a)、B(b,-3)两点,则(a-b)2=__.
10、(4分)如图,已知正方形纸片ABCD,M,N分别是AD、BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=_____度.
11、(4分)已知,如图,矩形ABCD中,E,F分别是AB,AD的中点,若EF=5,则AC=_____.
12、(4分)已知,,,则的值是_______.
13、(4分)若直线y=ax+7经过一次函数y=4﹣3x和y=2x﹣1的交点,则a的值是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.
(1)求直线AB的函数解析式;
(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;
(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
15、(8分)已知,在菱形ABCD中,G是射线BC上的一动点(不与点B,C重合),连接AG,点E、F是AG上两点,连接DE,BF,且知∠ABF=∠AGB,∠AED=∠ABC.
(1)若点G在边BC上,如图1,则:
①△ADE与△BAF______;(填“全等”或“不全等”或“不一定全等”)
②线段DE、BF、EF之间的数量关系是______;
(2)若点G在边BC的延长线上,如图2,那么上面(1)②探究的结论还成立吗?如果成立,请给出证明;如果不成立,请说明这三条线段之间又怎样的数量关系,并给出你的证明.
16、(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,点 坐标为.
(1)画出关于轴对称的;
(2)画出将绕原点逆时针旋转90°所得的;
(3)与能组成轴对称图形吗?若能,请你画出所有的对称轴.
17、(10分)某公司购进某种矿石原料300吨,用于生产甲、乙两种产品,生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表:
生产1吨甲产品所需成本费用为4000元,每吨售价4600元;
生产1吨乙产品所需成本费用为4500元,每吨售价5500元,
现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.
(1)写出m与x之间的关系式
(2)写出y与x之间的函数表达式,并写出自变量的范围
(3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大,最大利润是多少?
18、(10分)如图,点D是△ABC内一点,点E,F,G,H分别是AB,AC,CD,BD的中点。
(1)求证:四边形EFGH是平行四边形;(2)已知AD=6,BD=4,CD=3,∠BDC=90°,求四边形EFGH的周长。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,,请你再添加一个条件______,使得(填一个即可).
20、(4分)如图,在等边三角形ABC中,AB=5,在AB边上有一点P,过点P作PM⊥BC,垂足为M,过点M作MN⊥AC,垂足为N,过点N作NQ⊥AB,垂足为Q.当PQ=1时,BP=_____.
21、(4分)将直线向右平移个单位,所得的直线的与坐标轴所围成的面积是_______.
22、(4分)甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示。下列说法:①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.其中正确的是___(填序号).
23、(4分)若关于x的不等式2x﹣3a+2≥0的最小整数解为5,则实数a的值为_____
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠1.
(1)若CE=1,求BC的长;
(1)求证:AM=DF+ME.
25、(10分)在平面直角坐标系xOy中,一次函数的图象与直线平行,且经过点A(1,6).
(1)求一次函数的解析式;
(2)求一次函数的图象与坐标轴围成的三角形的面积.
26、(12分)(2010•清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
把x=2代入方程得2a-b=1009,再代入 ,可求得结果.
【详解】
因为是关于x的一元二次方程的一个解,
所以,4a-2b-2018=0,
所以,2a-b=1009,
所以,=2035-(2a-b)=2035-1009=1026.
故选B.
本题主要考查一元二次方程的根的意义.
2、C
【解析】
以交点为分界,结合图象写出不等式kx<ax+b的解集即可.
【详解】
函数y=kx和y=ax+b的图象相交于点P(-1,-2).
由图可知,不等式kx<ax+b的解集为x<-1.
故选C.
此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.
3、A
【解析】
试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.
设AB=AD=x.
又∵AD∥BC,
∴四边形AEFD是矩形形,
∴AD=EF=x.
在Rt△ABE中,∠ABC=60°,则∠BAE=30°,
∴BE=AB=x,
∴DF=AE==x,
在Rt△CDF中,∠FCD=30°,则CF=DF•ct30°=x.
又BC=6,
∴BE+EF+CF=6,即x+x+x=6,
解得 x=2
∴△ACD的面积是:AD•DF=x×x=×22=.
故选A.
考点:1.勾股定理2.含30度角的直角三角形.
4、B
【解析】
根据“有一内角为直角的平行四边形是矩形”来推断由三角形中位线定理和平行四边形的判定定理易推知四边形EFGH是平行四边形,若或者就可以判定四边形EFGH是矩形.
【详解】
当时,四边形EFGH是矩形,
,,,
,
即,
四边形EFGH是矩形;
故选:B.
此题考查了中点四边形的性质、矩形的判定以及三角形中位线的性质此题难度适中,注意掌握数形结合思想的应用.
5、B
【解析】
根据三角形中位线定理计算即可
【详解】
∵M、N分别是AC、BC中点,
∴NM是△ACB的中位线,
∴AB=2MN=80m,
故选:B.
此题考查三角形中位线定理,解题关键在于掌握运算法则
6、A
【解析】
根据勾股定理求出直角三角形的斜边,即可得出答案.
【详解】
解:如图:
则BD=1,CD=2,
由勾股定理得:,即AC=,
∴,
故选A.
本题考查了数轴和实数,勾股定理的应用,能求出BC的长是解此题的关键.
7、A
【解析】
由于图①有矩形有6个=5×1+1,图②矩形有11个=5×2+1,图③矩形有16=5×3+1,第n个图形矩形的个数是5n+1把n=6代入求出即可.
【详解】
解:∵图①有矩形有6个=5×1+1,
图②矩形有11个=5×2+1,
图③矩形有16=5×3+1,
∴第n个图形矩形的个数是5n+1
当n=6时,5×6+1=31个.
故选:A.
此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.
8、C
【解析】
根据旋转的性质和三角形内角和180度求出
解:根据旋转的性质可知:∠C=∠A=110°
在△COD中,∠COD=180°-110°-40°=30°
旋转角∠AOC=85°,所以∠α=85°-30°-55°
故选:C.
本题主要考查了旋转的性质,解题的关键是找准旋转角.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先将A(-2,a)、B(b,-3)两点的坐标代入反比例函数的解析式y=,求出a、b的值,再代入(a-b)2,计算即可.
【详解】
∵反比例函数y=的图象同时过A(−2,a)、B(b,−3)两点,
∴a= =−1,b= = ,
∴(a−b) 2=(−1+) 2= .
故答案为.
此题考查反比例函数图象上点的坐标特征,解题关键在于把已知点代入解析式
10、1
【解析】
根据折叠的性质知:可知:BN=BP,从而可知∠BPN的值,再根据∠PBQ=∠CBQ,可将∠PBQ的角度求出.
【详解】
根据折叠的性质知:BP=BC,∠PBQ=∠CBQ
∴BN=BC=BP
∵∠BNP=90°
∴∠BPN=1°
∴∠PBQ=×60°=1°.
故答案是:1.
已知折叠问题就是已知图形的全等,根据边之间的关系,可将∠PBQ的度数求出.
11、1.
【解析】
连接BD,由三角形中位线的性质可得到BD的长,然后依据矩形的性质可得到AC=BD.
【详解】
如图所示:连接BD.
∵E,F分别是AB,AD的中点,EF=5,
∴BD=2EF=1.
∵ABCD为矩形,
∴AC=BD=1.
故答案为:1.
本题主要考查的是矩形的性质、三角形的中位线定理的应用,求得BD的长是解题的关键.
12、
【解析】
首先根据a+b=−8,和ab=10确定a和b的符号,然后对根式进行化简,然后代入求解即可.
【详解】
解:
原式=
则原式=
故答案为:.
本题考查了根式的化简求值,正确确定a和b的符号是解决本题的关键.
13、-2
【解析】
根据题意,得4﹣3x=2x﹣1,解得x=1,∴y=1.
把(1,1)代入y=ax+7,得a+7=1,解得a=﹣2.
故答案为﹣2.
三、解答题(本大题共5个小题,共48分)
14、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).
【解析】
(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.
(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,
【详解】
(1)设直线AB的函数解析式为y=kx+b,则 解方程组得
直线AB的函数解析式为y= -x+6,
(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则 ,
解方程组得
所以直线AB′的解析式为,
当x=0时,y=,
所以M点的坐标为(0,),
(3)有符合条件的点M,理由如下:
如图:因为△ABM是以AB为直角边的直角三角形,
当∠MAB=90°时,直线MA垂直直线AB,
∵直线AB的解析式为y=-x+6,
∴设MA的解析式为y=x+b,
∵点A(4,2),
∴2=4+b,
∴b=-2,
当∠ABM′=90°时,BM′垂直AB,
设BM′的解析式为y=x+n,
∵点B(6,0)
∴6+n=0
∴n=-6,
即有满足条件的点M为(0,-2)或(0,-6).
本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.
15、(1)①全等;②DE=BF+EF;(2)DE=BF-EF,见解析
【解析】
(1)①根据菱形的性质得到AB=AD,AD∥BC,由平行线的性质得到∠BGA=∠DAE,等量代换得到∠BAF=∠ADE,求得∠ABF=∠DAE,根据全等三角形的判定定理即可得到结论;
②根据全等三角形的性质得到AE=BF,DE=AF,根据线段的和差即可得到结论.
(2)与(1)同理证△ABF≌△DAE得AE=BF,DE=AF,由AF=AE-EF=BF-EF可得答案.
【详解】
(1)①∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∴∠BGA=∠DAE,
∵∠ABC=∠AED,
∴∠BAF=180-∠ABC -∠BGA =180-∠AED -∠DAE =∠ADE,
∵∠ABF=∠BGF,∠BGA=∠DAE,
∴∠ABF=∠DAE,
∵AB=DA,
∴△ABF≌△DAE(ASA);
②∵△ABF≌△DAE,
∴AE=BF,DE=AF,
∵AF=AE+EF=BF+EF,
∴DE=BF+EF.
故答案为:全等,DE=BF+EF;
(2)DE=BF-EF,
如图,
∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∴∠BGA=∠DAE,
∵∠ABC=∠AED,
∴∠BAF=180-∠ABC -∠BGA =180-∠AED -∠DAE =∠ADE,
∵∠ABF=∠BGF,∠BGA=∠DAE,
∴∠ABF=∠DAE,
∵AB=DA,
∴△ABF≌△DAE(ASA);
∴AE=BF,DE=AF,
∵AF=AE-EF=BF-EF,
则DE=BF-EF
本题是四边形的综合问题,考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键.
16、(1)见解析;(2)见解析;(3)能,图见解析;
【解析】
(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;
(2)根据网格结构找出点A、B、C绕原点O按逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可;
(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线.
【详解】
(1)如图所示:
(2)如图所示:
(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,如图,对称轴有2条.
此题考查利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
17、(1)m=75-2.5x;(2)y=-1900x+75000(0≤x≤30);(3)生产甲产品25吨时,公司获得的总利润最大,最大利润是27500元.
【解析】
(1)∵生产甲产品x吨,则用矿石原料10x吨.∴生产乙产品用矿石原料为(300-10x)吨,由此得出;
(2)先求出生产1吨甲、乙两种产品各获利多少,然后可求出获得的总利润.
(3)由于总利润y是x的一次函数,先求出x的取值范围,再根据一次函数的增减性,求得最大利润.
【详解】
(1)m与x之间的关系式为
(2)生产1吨甲产品获利:4600-4000=600
生产1吨乙产品获利:5500-4500=1000
y与x的函数表达式为:(0≤x≤30)
(3)根据题意列出不等式
解得x≥25
又∵0≤x≤30
∴25≤x≤30
∵y与x的函数表达式为:y=-1900x+75000
y随x的增大而减小,
∴当生产甲产品25吨时,公司获得的总利润最大
y最大=-1900×25+75000=27500(元).
本题考查的知识点是用函数的知识解决实际问题,解题关键是注意自变量的取值范围还必须使实际问题有意义.
18、(1)见解析;(2)周长为:11.
【解析】
(1)根据三角形的中位线的定理和平行四边形的判定即可解答;
(2)利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.
【详解】
(1)证明:∵点E,F 分别是AB,AC 的中点,
∴EF 是△ABC 的中位线,∴EF∥BC 且EF=BC;
又∵点H,G 分别是BD,CD 的中点,∴HG 是△BCD 的中位线,∴HG∥BC
且HG=BC;
∴EF∥HG 且EF=HG,∴四边形EFGH 是平行四边形.
(2)∵点E,H 分别是AB,BD 的中点,∴EH 是△ABD 的中位线,∴EH=AD=3;
∵∠BDC=90°,∴△BCD 是直角三角形;
在Rt△BCD 中,CD=3,BD=4,∴由勾股定理得:BC=5;
∵HG=BC,∴HG=;
由(1)知,四边形EFGH 是平行四边形,∴周长为2EH+2HG=11.
本题考查了三角形中位线定理, 勾股定理,掌握三角形中位线定理, 勾股定理是解决问题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(答案不唯一)
【解析】
注意两个三角形有一个公共角∠A,再按照三角形全等的判定方法结合图形添加即可.
【详解】
解:∵∠ A=∠ A, AB=AC,
∴若按照SAS可添加条件AD=AE;
若按照AAS可添加条件∠ ADB=∠AEC;
若按照ASA可添加条件∠B=∠C;
故答案为AD=AE或∠ADB=∠AEC或∠B=∠C.
本题考查了全等三角形的判定方法,熟练掌握判定三角形全等的各种方法是解决此类问题的关键.
20、或
【解析】
分析:由题意可知P点可能靠近B点,也可能靠近A点,所以需要分为两种情况:设BM=x,AQ=y,
若P靠近B点,由题意可得∠BPM=30°,根据直角三角形的性质可得BP=2BM=2x,AN=2y,CM=2CN=10-4y,再根据AB=BC=5,PQ=1,列方程组,解出x、y即可求得BP的长;
若点P靠近A点,同理可得,求解即可.
详解:设BM=x,AQ=y,
若P靠近B点,如图
∵等边△ABC,
∴AB=BC=AC=5,∠A=∠B=∠C=60°
∵PM⊥BC
∴∠BMP=90°
则Rt△BMP中,∠BPM=30°,
∴BM=BP
则BP=2x
同理AN=2y,
则CN=5-2y
在Rt△BCM中,CM=2CN=10-4y
∵AB=BC=5,PQ=1
∴
解得
∴BP=2x=;
若点P靠近A点,如图
由上面的解答可得BP=2x,AQ=y,CM=10-4y
∴
解得
∴BP=2x=
综上可得BP的长为:或.
点睛:此题主要考查了等边三角形的性质和30°角的直角三角形的性质,关键是正确画图,分两种情况讨论,注意掌握和明确方程思想和数形结合思想在解题中的作用.
21、
【解析】
先求出平移后的直线的解析式,再求出平移后的直线与两坐标轴的交点即可求得结果.
【详解】
解:直线向右平移个单位后的解析式为,
令x=0,则y=-9,令y=0,则3x-9=0,解得x=3,
所以直线与x轴、y轴的交点坐标分别为(3,0)、(0,-9),
所以直线与坐标轴所围成的三角形面积是.
故答案为:.
本题考查了一次函数的平移和一次函数与坐标轴的交点问题,一次函数的平移遵循“上加下减,左加右减”的规律,正确求出平移后一次函数的解析式是解此题的关键.
22、①②③.
【解析】
根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.
【详解】
由图象得出甲步行720米,需要9分钟,
所以甲的运动速度为:720÷9=80(m/分),
当第15分钟时,乙运动15−9=6(分钟),
运动距离为:15×80=1200(m),
∴乙的运动速度为:1200÷6=200(m/分),
∴200÷80=2.5,(故②正确);
当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达青少年宫,(故①正确);
此时乙运动19−9=10(分钟),
运动总距离为:10×200=2000(m),
∴甲运动时间为:2000÷80=25(分钟),
故a的值为25,(故④错误);
∵甲19分钟运动距离为:19×80=1520(m),
∴b=2000−1520=480,(故③正确).
故正确的有:①②③.
故答案为:①②③.
此题考查一次函数的应用,解题关键在于结合函数图象进行解答.
23、<a≤1
【解析】
先将a看作常数解不等式,根据最小整数解为5,得1<≤5,解出即可.
【详解】
解不等式2x-3a+2≥0得x≥,
∵不等式的最小整数解为5,
∴1<≤5,
∴<a≤1,
故答案为<a≤1.
本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.
二、解答题(本大题共3个小题,共30分)
24、 (1)1;(1)见解析.
【解析】
试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;
(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.
试题解析:(1)∵四边形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME
证明:如图,
∵F为边BC的中点,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延长AB交DF的延长线于点G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵
∴△CDF≌△BGF(AAS),
∴GF=DF,
由图形可知,GM=GF+MF,
∴AM=DF+ME.
25、 (1) y=2x+4 ;(2)直线y=2x+4与坐标轴围成的三角形的面积为
【解析】
(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.
(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.
【详解】
(1)∵一次函数y=kx+b的图象为直线,且与直线y=2x平行,
∴k=2
又知其过点A(1,6),
∴2+b=6
∴b=4.
∴一次函数的解析式为y=2x+4
(2)当x=0时,y=4,
可知直线y=2x+4与y轴的交点为(0,4)
当y=0时,x=-2,
可知直线y=2x+4与x轴交点为(-2,0)
可得该直角三角形的两条直角边长度分别为4和2.
所以直线y=2x+4与坐标轴围成的三角形的面积为
本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.
26、y=x+.
【解析】
试题分析:由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.
解:由正比例函数y=kx的图象过点(1,2),
得:k=2,
所以正比例函数的表达式为y=2x;
由一次函数y=ax+b的图象经过点(1,2)和(4,0)
得
解得:a=,b=,
∴一次函数的表达式为y=x+.
考点:待定系数法求一次函数解析式.
题号
一
二
三
四
五
总分
得分
批阅人
产品资源
甲
乙
矿石(吨)
10
4
煤(吨)
4
8
2025届江苏省无锡市查桥中学数学九年级第一学期开学经典试题【含答案】: 这是一份2025届江苏省无锡市查桥中学数学九年级第一学期开学经典试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南通市紫石中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024年江苏省南通市紫石中学数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年江苏省南通市崇川区田家炳中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024年江苏省南通市崇川区田家炳中学数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。