![2025届吉林省长春市第160中学数学九上开学预测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16232448/0-1728465235838/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届吉林省长春市第160中学数学九上开学预测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16232448/0-1728465235915/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届吉林省长春市第160中学数学九上开学预测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16232448/0-1728465235940/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届吉林省长春市第160中学数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在函数自变量x的取值范围是( )
A.x≠B.x≥C.x≤D.x≠0
2、(4分)下列二次根式中,能与合并的是( )
A.B.C.D.
3、(4分)某人出去散步,从家里出发,走了20min,到达一个离家900m的阅报亭,看了10min报纸后,用了15min返回家里,下面图象中正确表示此人离家的距离y(m)与时间x(min)之家关系的是( )
A.B.
C.D.
4、(4分)天籁音乐行出售三种音乐,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售量的百分比,应该用( )
A.条形统计图B.扇形统计图C.折线统计图D.以上都可以
5、(4分)在中,,则的值是( )
A.12B.8C.6D.3
6、(4分)下列计算中,①;②;③;④不正确的有( )
A.3个B.2个C.1个D.4个
7、(4分)若一次函数y=kx+17的图象经过点(-3,2),则k的值为( )
A.-6 B.6 C.-5 D.5
8、(4分)已知矩形的面积为36cm2,相邻的两条边长为xcm和ycm,则y与x之间的函数图像大致是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.
10、(4分)若,则代数式的值为__________.
11、(4分)方程的解是_____.
12、(4分)用换元法解方程+3=0时,如果设=y,那么将原方程变形后所得的一元二次方程是_____.
13、(4分)如图,在正方形中,是对角线上的点,,,分别为垂足,连结. 设分别是的中点,,则的长为________。
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,点分别在上,点在对角线上,且.求证:四边形是平行四边形.
15、(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.
(1)求这条直线的解析式;
(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD的解析式;
16、(8分)如图所示,在中,点在上,于,且平分,.
求证:.
17、(10分)如图,直线过A(﹣1,5),P(2,a),B(3,﹣3).
(1)求直线AB的解析式和a的值;
(2)求△AOP的面积.
18、(10分)如图①,直线与双曲线相交于点、,与x轴相交于C点.
求点A、B的坐标及直线的解析式;
求的面积;
观察第一象限的图象,直接写出不等式的解集;
如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是: ,则射击成绩较稳定的是________(选填“甲”或“乙”).
20、(4分)如图所示,在正方形中,延长到点,若,则四边形周长为__________.
21、(4分)一个数的平方等于这个数本身,这个数为_________.
22、(4分)已知两个相似三角形的相似比为4:3,则这两个三角形的对应高的比为______.
23、(4分)如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)计算:﹣22﹣|2﹣|+(﹣1)2017×(π﹣3)0﹣()﹣1
25、(10分)解不等式组:,并判断是否为该不等式组的解.
26、(12分)求证:等腰三角形的底角必为锐角. (请根据题意画出图形,写出已知、求证,并证明)
已知:
求证:
证明:
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据被开方式大于或等于零解答即可.
【详解】
由题意得
1-2x≥0,
∴x≤.
故选C.
本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.
2、B
【解析】
先把各个二次根式化简,根据同类二次根式的概念判断即可.
【详解】
A. 不能与合并;
B. ,能与合并;
C. ,不能与合并;
D. ,不能与合并.
故选B.
本题考查的是同类二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.
3、D
【解析】
试题分析:由于某人出去散步,从家走了20分钟,到一个离家900米的阅报亭,并且看报纸10分钟,这是时间在加长,而离家的距离不变,再按原路返回用时15分钟,离家的距离越来越短,由此即可确定表示张大伯离家时间与距离之间的关系的函数图象.
解:依题意,0~20min散步,离家路程从0增加到900m,
20~30min看报,离家路程不变,
30~45min返回家,离家从900m路程减少为0m,
且去时的速度小于返回的速度,
故选D.
【点评】此题主要考查了函数图象,利用图象信息隐含的数量关系确定所需要的函数图象是解答此题的关键.
4、B
【解析】
扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目. 根据以上即可得出.
【详解】
根据题意,知,要求表示这三种唱片的销售量占总销售的百分比,结合统计图各自的特点,应选用扇形统计图.
故选B.
本题考查了统计图的选择,熟练掌握扇形统计图、折线统计图及条形统计图的特征是解题的关键.
5、C
【解析】
证明△ABC是等边三角形即可解决问题.
【详解】
解:∵AB=AC,∠A=60°,
∴△ABC是等边三角形,
∴AB=BC=6,
故选:C.
本题考查等边三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6、A
【解析】
直接利用积的乘方运算法则、单项式乘以单项式的法则、同底数幂的除法法则分别计算得出答案即可.
【详解】
解:①,故此选项错误,符合题意;
②,故此选项错误,符合题意;
③,故此选项正确,不符合题意;
④,故此选项错误,符合题意;
故选:A
此题主要考查了积的乘方、单项式乘以单项式、同底数幂的除法等运算知识,正确掌握运算法则是解题关键.
7、D
【解析】
由一次函数经过(-3,2),故将x=-3,y=2代入一次函数解析式中,得到关于k的方程,求出方程的解即可得到k的值.
【详解】
由一次函数y=kx+17的图象经过点(-3,2),
故将x=-3,y=2代入一次函数解析式得:2=-3k+17,
解得:k=1,
则k的值为1.
故选D.
此题考查了待定系数法求一次函数解析式,灵活运用待定系数法是解本题的关键.
8、A
【解析】
解:根据矩形的面积公式,得xy=36,即,是一个反比例函数
故选A
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
先根据得出,再求出的度数,由即可得出结论.
【详解】
,,
,
,
,
.
故答案为:.
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
10、5
【解析】
先把变形为(x+1)2,再把代入计算即可.
【详解】
∵,
∴=(x+1)2=(+1)2=5.
故答案为:5.
本题考查了求代数式的值,完全平方公式,以及二次根式的运算,根据完全平方公式将所给代数式变形是解答本题的关键.
11、x=﹣1.
【解析】
把方程两边平方后求解,注意检验.
【详解】
把方程两边平方得x+2=x2,
整理得(x﹣2)(x+1)=0,
解得:x=2或﹣1,
经检验,x=﹣1是原方程的解.
故本题答案为:x=﹣1.
本题考查无理方程的求法,注意无理方程需验根.
12、3y2+3y﹣2=1
【解析】
设,则原方程化为3y﹣+3=1,,再整理即可.
【详解】
﹣+3=1,
设=y,则原方程化为:3y﹣+3=1,
即3y2+3y﹣2=1,
故答案为:3y2+3y﹣2=1.
本题考查了解分式方程,能够正确换元是解此题的关键.
13、2.1
【解析】
连接AG,CG,根据矩形的判定定理得到四边形CFGE是矩形,求得CG=EF=1,根据全等三角形的性质得到AG=CG=1,由三角形中位线的性质即可得到结论.
【详解】
连接AG,CG,
∵在正方形ABCD中,∠BCD=90°,
∵GE⊥CD,GF⊥BC,
∴四边形CFGE是矩形,
∴CG=EF=1,
∵AB=BC,∠ABD=∠CBD=41°,
∵BG=BG,
∴△ABG≌△CBG(SAS),
∴AG=CG=1,
∵M,N分别是AB,BG的中点,
∴MN=AG=2.1,
故答案为:2.1.
本题考查正方形的性质,全等三角形的判定和性质,三角形的中位线定理,正确的作出辅助线是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、证明见解析.
【解析】
根据SAS可以证明△MAE≌△NCF.从而得到EM=FN,∠AEM=∠CFN.根据等角的补角相等,可以证明∠FEM=∠EFN,则EM∥FN.根据一组对边平行且相等的四边形是平行四边形即可证明.
【详解】
证明:∵四边形是平行四边形,
∴,
∵,
∴,
∴,
∵,
∴,
在与中:
∴,
∴,
∴,
∴,
∴,
∴四边形是平行四边形.
此题综合运用了平行四边形的性质和判定.能够根据已知条件和平行四边形的性质发现全等三角形是解题的关键.
15、(1)y=-2x+6,(2)n=8,y=4x+1
【解析】
(1)把代入函数解析式,可得答案.
(2)先求D的坐标,再利用待定系数法求解AD的解析式.
【详解】
解:(1)∵直线y=-2x+a与y轴交于点C(0,6),
∴a=6,
∴y=-2x+6,
⑵∵点D(-1,n)在y=-2x+6上,
,
∴设直线AD的解析式为y=kx+b,
解得:
∴直线AD的解析式为y=4x+1.
本题考查的是用待定系数法求一次函数的解析式,掌握待定系数法是解题的关键.
16、详见解析
【解析】
首先根据已知易证,可得是中点,再根据三角形的中位线定理可得.
【详解】
证明:∵,平分,
∴,,
又∵,
∴(ASA),
∴.
又∵,
∴.
此题主要考查了三角形中位线定理,以及全等三角形的判定和性质,关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
17、(2)-2(2)
【解析】
(2)设直线的表达式为y=kx+b,把点A. B的坐标代入求出k、b,即可得出答案; 把P点的坐标代入求出即可得到a;
(2)根据坐标和三角形面积公式求出即可.
【详解】
(2)设直线AB的解析式为y=kx+b(k≠0),
将A(﹣2,5),B(2,﹣2)代入y=kx+b,得:,
解得:,
∴直线AB的解析式为y=﹣2x+2.
当x=2时,y=﹣2x+2=﹣2,
∴点P的坐标为(2,﹣2),
即a的值为﹣2.
(2)设直线AB与y轴交于点D,连接OA,OP,如图所示.
当x=0时,y=﹣2x+2=2,
∴点D的坐标为(0,2).
S△AOP=S△AOD+S△POD=OD•|xA|+OD•|xP|=×2×2+×2×2=.
本题考查一元一次方程和直角坐标系的问题,解题的关键是掌握求解一元一次方程.
18、(1);(2);(3);(4)
【解析】
(1)先确定出点A,B坐标,再用待定系数法求出直线AB解析式;
(2)先求出点C,D坐标,再用面积的差即可得出结论;
(3)先确定出点P的位置,利用三角形的三边关系,最后用待定系数法求出解析式,即可得出结论.
【详解】
解:(1)∵点、在双曲线上,
,,
,,
点A,B在直线上,
,
,
直线AB的解析式为;
(2)如图,
由(1)知,直线AB的解析式为,
,,
,,
;
(3)由(1)知,,,
由图象知,不等式的解集为;
(4)存在,理由:如图2,
作点关于x轴的对称点B′(4,-1),连接AB′交x轴于点P,连接BP,在x轴上取一点Q,连接AQ,BQ,
点B与点B′关于x轴对称,
点P,Q是BB′的中垂线上的点,
∴PB′=PB, QB′=QB,
在△AQB′中,AQ+B′Q>AB′
的最小值为AB′,
,B ′(4,-1),
直线AB′的解析式为,
令,
,
,
.
本题是反比例函数综合题,涉及了待定系数法,对称的性质,三角形的面积的计算方法,解本题的关键是求出直线AB的解析式和确定出点P的位置.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、甲
【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:因为甲的方差最小,所以射击成绩较稳定的是甲;
故答案为:甲
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、
【解析】
由正方形的性质可知,在中,由勾股定理可得CE长,在中,根据勾股定理得DE长,再由求周长即可.
【详解】
解:如图,连接DE,
四边形ABCD为正方形
在中,根据勾股定理得,
在中,根据勾股定理得
所以四边形周长为,
故答案为:.
本题主要考查了勾股定理的应用,灵活的应用勾股定理求线段长是解题的关键.
21、0或1
【解析】
根据特殊数的平方的性质解答.
【详解】
解:平方等于这个数本身的数只有0,1.
故答案为:0或1.
此题考查了特殊数值的平方的性质,要注意平时在学习中进行积累.
22、4:1
【解析】
直接利用相似三角形的性质求解.
【详解】
∵两个相似三角形的相似比为4:1,
∴这两个三角形的对应高的比为4:1.
故答案为:4:1.
本题主要考查相似三角形的性质,掌握“相似三角形的对应角相等,对应边的比相等;相似三角形周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方”是解题的关键.
23、或或1
【解析】
根据点P所在的线段分类讨论,再分析每种情况下腰的情况,然后利用直角三角形的性质和勾股定理分别求值即可.
【详解】
解:①当点P在AB上时,由∠ABC=120°,此时只能是以∠PBE为顶角的等腰三角形,BP=BE,过点B作BF⊥PE于点F,如下图所示
∴∠FBE=∠ABC=10°,EP=2EF
∴∠BEF=90°-∠FBE=30°
∵,点是的中点
∴BE=
在Rt△BEF中,BF=
根据勾股定理:EF=
∴EP=2EF=;
②当点P在AD上时,过点B作BF⊥AB于F,过点P作PG⊥BC,如下图所示
∵∠ABC=120°
∴∠A=10°
∴∠ABF=90°-∠A=30°
在Rt△ABF中AF=,BF=
∴BP≥BF>BE,EP≥BF>BE
∴此时只能是以∠BPE为顶角的等腰三角形,BP=PE,
∴PG=BF=,EG=
根据勾股定理:EP=;
③当点P在CD上时,过点E作EF⊥CD于F,过点B作BG⊥CD
由②可知:BE的中垂线与CD无交点,
∴此时BP≠PE
∵∠A=10°,四边形ABCD为平行四边形
∴∠C=10°
在Rt△BCG中,∠CBG=90°-∠C=30°,CG=
根据勾股定理:BG=
∴BP≥BG>BE
∵EF⊥CD,BG⊥CD,点E为BC的中点
∴EF为△BCG的中位线
∴EF=
∴此时只能是以∠BEP为顶角的等腰三角形,BE=PE=1.
综上所述:的长为或或1.
故答案为:或或1
此题考查的是等腰三角形的性质、直角三角形的性质和勾股定理,掌握三线合一、30°所对的直角边是斜边的一半、利用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.
【详解】
解:原式=
=
=.
此题主要考查了实数运算,正确化简各数是解题关键.
25、,是该不等式组的解
【解析】
先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【详解】
解:
由不等式①得:
由不等式②得:
∴不等式组的解集为:
∵,
∴是该不等式组的解.
本题考查的是解一元一次不等式组,以及不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤和方法.
26、详见解析
【解析】
根据题意写出已知、求证,假设∠B=∠C≥90°,计算得出∠A+∠B+∠C>180°,与三角形内角和定理矛盾,从而得出假设不成立即可.
【详解】
解:求证:等腰三角形的底角必为锐角.
已知:如图所示,△ABC中,AB=AC.
求证:∠B=∠C<90°.
证明:∵AB=AC
∴∠B=∠C
假设∠B=∠C≥90°
∴∠B+∠C≥180°
∵∠A>0°
∴∠A+∠B+∠C>180°
与三角形内角和定理∠A+∠B+∠C=180°矛盾
∴假设不成立
∴等腰△ABC中∠B=∠C<90°,即等腰三角形的底角必为锐角.
本题考查了命题的证明,等腰三角形的性质,解题的关键是根据题意写出已知求证,并提出假设,推翻假设.
题号
一
二
三
四
五
总分
得分
批阅人
2024年上海市川沙中学数学九上开学预测试题【含答案】: 这是一份2024年上海市川沙中学数学九上开学预测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】: 这是一份2024年吉林省长春市解放大路中学数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年吉林省长春市第157中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024年吉林省长春市第157中学数学九年级第一学期开学调研试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。