吉林省长春市九台区2024-2025学年数学九上开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)以下四组数中的三个数作为边长,不能构成直角三角形的是( )
A.1,,B.5,12,13C.32,42,52D.8,15,17.
2、(4分)若点(﹣2,y1)、(﹣1,y2)和(1,y3)分别在反比例函数y=﹣的图象上,则下列判断中正确的是( )
A.y1<y2<y3B.y3<y1<y2C.y2<y3<y1D.y3<y2<y1
3、(4分)为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是( )
A.(1+x)2=24.2B.20(1+x)2=24.2
C.(1﹣x)2=24.2D.20(1﹣x)2=24.2
4、(4分)在同一平面直角坐标系中,函数y=2x﹣a与y=(a≠0)的图象可能是( )
A.B.
C.D.
5、(4分)菱形具有平行四边形不一定具有的特征是( )
A.对角线互相垂直B.对角相等C.对角线互相平分D.对边相等
6、(4分)如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为( )
A. B.
C. D.
7、(4分)下列各组数中,不是勾股数的是( )
A.9,12,15B.12,18,22C.8,15,17D.5,12,13
8、(4分)对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限
B.函数的图象与x轴的交点坐标是(2,0)
C.函数的图象向下平移4个单位长度得y=﹣2x的图象
D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在中,,且把的面积三等分,那么_____.
10、(4分)已知一个多边形中,除去一个内角外,其余内角的和为,则除去的那个内角的度数是______.
11、(4分)正八边形的一个内角的度数是 度.
12、(4分)如图,直线经过点,则关于的不等式的解集是______.
13、(4分)化简______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.
(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180?
(2)能围成总面积为240的长方形花圃吗?说明理由.
15、(8分)分解因式:
16、(8分)如图,点分别是对角线上两点,.求证:.
17、(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
18、(10分)如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°,OD是OB的反向延长线,OC是∠AOD的平分线。
(1)求∠DOC的度数;
(2)求出射线OC的方向。
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,点A,B在函数的图象上,点A、B的横坐标分别为、3,则△AOB的面积是_____.
20、(4分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是_____.
21、(4分)若关于x的方程-2=会产生增根,则k的值为________
22、(4分)《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为_______________.
23、(4分)如图,在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1,S,S3,若S1+S3=10,则S=__.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:
甲、乙射击成绩统计表
(1)请补全上述图表(请直接在表中填空和补全折线图);
(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;
(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?
25、(10分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险? ()
26、(12分)如图,E、F是矩形ABCD边BC上的两点,AF=DE.
(1)求证:BE=CF;
(2)若∠1=∠2=30°,AB=5,FC=2,求矩形ABCD的面积(结果保留根号).
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
分别求出两小边的平方和和长边的平方,看看是否相等即可.
【详解】
A、∵12+()2=()2,
∴以1,,为边能组成直角三角形,故本选项不符合题意;
B、∵52+122=132,
∴以5、12、13为边能组成直角三角形,故本选项不符合题意;
C、∵92+162≠52,
∴以32,42,52为边不能组成直角三角形,故本选项符合题意;
D、∵82+152=172,
∴8、15、17为边能组成直角三角形,故本选项不符合题意;
故选C.
本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:如果三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形
2、B
【解析】
先根据反比例函数中,k2+1>0,可知-( k2+1)<0,判断出函数图像所在的象限及增减性,再根据各点横坐标的特点即可得出结论.
【详解】
解:∵反比例函数的,-( k2+1)<0,
∴函数图像的两个分支分别位于第二、四象限,且在每一象限内y随x的增大而增大.
∵-2<-1<0,
∴点、位于第二象限,且在第二象限内y随x的增大而增大,
∴y2>y1>0,
又∵1>0,
∴点位于第四象限,
∴y3<0,
∴y3
本题考查的是反比例函数图像上的点的坐标特点,熟知反比例函数图像上各点坐标一定适合此函数的解析式是解题的关键.
3、B
【解析】
如果设年增长率为x,则可以根据“住房面积由现在的人均约为10平方厘米提高到14.1平方厘米”作为相等关系得到方程10(1+x)1=14.1.
【详解】
解:设每年的增长率为x,根据题意得10(1+x)1=14.1,故选:B.
本题考查列一元二次方程,解题的关键是读懂题意,由题意得到等式10(1+x)1=14.1.
4、D
【解析】
根据一次函数的图像得a值,根据a值求判断反比例函数图像.
【详解】
解:A、由一次函数的图象,得k<0,与k=2矛盾,故A不符合题意;
B、由一次函数的图象,得k<0,与k=2矛盾,故B不符合题意;
C、由一次函数的图象,得a<0,当a<0时反比例函数的图象位于二四象限,故C不符合题意;
D、由一次函数的图象,得a>0,当a>0时反比例函数的图象位于一三象限,故D符合题意,
故选:D.
本题考查的是反比例函数和一次函数,熟练掌握二者的图像是解题的关键.
5、A
【解析】
根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等; ③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.
【详解】
菱形具有但平行四边形不一定具有的是对角线互相垂直,
故选A.
本题主要考查了菱形和平行四边形的性质,关键是熟练掌握二者的性质定理.
6、C
【解析】
根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C
7、B
【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.
【详解】
解:、,能构成直角三角形,是正整数,故是勾股数;
、,不能构成直角三角形,故不是勾股数;
、,能构成直角三角形,是正整数,故是勾股数;
、,能构成直角三角形,是正整数,故是勾股数;
故选:B.
此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知的三边满足,则是直角三角形.
8、D
【解析】
根据一次函数的性质和一次函数图象上点的坐标特征以及一次函数的几何变换进行判断.
【详解】
解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;
B、函数的图象与x轴的交点坐标是(2,0),不符合题意;
C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;
D、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y2<y1,符合题意;
故选D.
本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据相似三角形的判定及其性质,求出线段DE,MN,BC之间的数量关系,即可解决问题.
【详解】
将的面积三等分,
设的面积分别为
,
,
,
,
故答案为:.
本题考查相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解决问题的关键.
10、
【解析】
由于多边形内角和=,即多边形内角和是180°的整数倍,因此先用减去后的内角和除以180°,得到余数为80°,因此减去的角=180°-80°=100°.
【详解】
∵1160°÷180°=6…80°,
又∵100°+80°=180°,
∴这个内角度数为100°,
故答案为:100°.
本题主要考查多边形内角和,解决本题的关键是要熟练掌握多边形内角和的相关计算.
11、135
【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.
【详解】
正八边形的内角和为:(8﹣2)×180°=1080°,
每一个内角的度数为: 1080°÷8=135°,
故答案为135.
12、
【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.
【详解】
解:观察图像可知:当x>2时,y<1.
所以关于x的不等式kx+3<1的解集是x>2.
故答案为:x>2.
本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.
13、.
【解析】
约去分子与分母的公因式即可.
【详解】
.
故答案为:.
本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.
三、解答题(本大题共5个小题,共48分)
14、(1)10米;(1)不能围成总面积为的长方形花圃,见解析.
【解析】
(1)设出AB的长是x米,则BC的长为(48-3x)米,由长方形的面积计算公式列方程解答即可;
(1)利用(1)的方法列出方程,利用判别式进行解答.
【详解】
解:(1)设AB的长是x米,则BC的长为(48-3x)米,根据题意列方程得,
x(48-3x)=180,
解得x1=6,x1=10,
当x=6时,48-3x=30>15,不符合题意,舍去;
当x=10时,48-3x=18<15,符合题意;
答:当AB的长是10米时,围成长方形花圃ABCD的面积为180m1.
(1)不能,理由如下:
同(1)可得x(48-3x)=140,
整理得x1-16x+80=0,
△=(-16)1-4×80=-64<0,
所以此方程无解,
即不能围成总面积为140m1的长方形花圃.
此题主要考查运用长方形面积计算方法列一元二次方程解决实际问题与根的判别式的应用.
15、.
【解析】
先提公因式2,再用完全平方公式进行分解即可。
【详解】
解:
.
本题考查了综合提公因式法和公式法进行因式分解,因式分解时要先提公因式再用公式分解。
16、见解析
【解析】
用SAS证明△BAF≌△DCE即可说明∠DEC=∠BFA.
【详解】
证明::∵四边形为平行四边形,
∴,
∴,
又,
∴≌,
∴.
本题主要考查了平行四边形的性质、全等三角形的判定和性质,解决这类问题一般是四边形转化为三角形处理.
17、(1)PB=PQ.证明见解析;(2)PB=PQ.证明见解析.
【解析】
试题分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;
(2)证明思路同(1).
试题解析:(1)PB=PQ,
证明:过P作PE⊥BC,PF⊥CD,
∵P,C为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形,
∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ;
(2)PB=PQ,
证明:过P作PE⊥BC,PF⊥CD,
∵P,C为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形,
∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ.
考点: 正方形的判定与性质;全等三角形的判定与性质.
18、(1)60°;(2)80°;
【解析】
(1)先求出∠AOB=60°,再求得∠AOD的度数,由角平分线得出∠AOC的度数,得出∠DOC的度数;(2)由(1)即可确定OC的方向.
【详解】
(1)∵OB的方向是北偏西40°,OA的方向是北偏东20°,
∴∠AOB=40°+20°=60°,
∴∠AOD=180°−60°=120°,
∵OC是∠AOD的平分线,
∴∠AOC=60°,
∴∠DOC=180°−(60°+60°)=60°;
(2)由(1)可知OC的方向为:20°+60°=80°,
∴射线OC的方向是北偏东80°.
此题考查方向角,解题关键在于掌握其定义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
过A作AC⊥x轴于C,过B作BD⊥x轴于D,由点A,B在函数的图象上,得到S△AOC=S△BOD=,求得A(m,),B(3m,),于是得到结论.
【详解】
解:过A作AC⊥x轴于C,过B作BD⊥x轴于D,
∵点A,B在函数的图象上,
∴S△AOC=S△BOD=,
∵点A、B的横坐标分别为m、3m,
∴A(m,),B(3m,),
∴S△AOB=S四边形ACDB=(+)×(3m-m)=1,
故答案为1.
本题考查了反比例函数系数k的几何意义,证得S△AOB=S四边形ACDB是解题的关键.
20、x≤1
【解析】
根据图象的性质,当y≤0即图象在x轴下侧,x≤1.
【详解】
根据图象和数据可知,当y≤0即图象在x轴下侧,x≤1.
故答案为x≤1
本题考查一次函数的图象,考查学生的分析能力和读图能力.
21、
【解析】
根据方程有增根可得x=3,把-2=去分母后,再把x=3代入即可求出k的值.
【详解】
∵关于x的方程-2=会产生增根,
∴x-3=0,
∴x=3.
把-2=的两边都乘以x-3得,
x-2(x-3)=-k,
把x=3代入,得
3=-k,
∴k=-3.
故答案为:-3.
本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.
22、x1+61=(10-x)1
【解析】
根据题意画出图形,由题意则有AC=x,AB=10﹣x,BC=6,根据勾股定理即可列出关于x的方程.
【详解】
根据题意画出图形,折断处离地面的高度为x尺,则AB=10﹣x,BC=6,
在Rt△ABC中,AC1+BC1=AB1,即x1+61=(10﹣x)1,
故答案为x1+61=(10﹣x)1.
本题考查了勾股定理的应用,正确画出图形,熟练掌握勾股定理的内容是解题的关键.
23、4
【解析】
根据题意,可以证明S与S1两个平行四边形的高相等,长是S1的2倍,S3与S的长相等,高是S的一半,这样就可以把S1和S3用S来表示,从而计算出S的
【详解】
解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,
∴AB∥HF//DC//GN,
设AC与FH交于P,CD与HG交于Q,
∴△PFC、△QCG和△NGE是正三角形,
∵F、G分别是BC、CE的中点,
故答案为:4.
本题主要考查了等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=ah.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.
二、解答题(本大题共3个小题,共30分)
24、 (1)见解析;(2)甲胜出;(3)见解析.
【解析】
试题分析:(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;
(2)计算出甲乙两人的方差,比较大小即可做出判断;
(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环.
试题解析:(1)如图所示.
甲、乙射击成绩统计表
(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.
(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,随着比赛的进行,乙的射击成绩越来越好(回答合理即可).
25、没有被浅滩阻碍的危险
【解析】
过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.
【详解】
过点作,设垂足为,
在中,
在中,
米
米.
米>米,故没有危险.
答:若船继续前进没有被浅滩阻碍的危险.
本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
26、(1)见解析;(2)
【解析】
(1)首先证明Rt△ABF≌Rt△DCE,从而可得到BF=CE,然后由等式的性质进行证明即可;
(2)先依据含30°直角三角形的性质求得AF的长,然后依据勾股定理求得BF的长,从而可求得BC的长,最后,依据矩形的面积公式求解即可.
【详解】
解:(1)∵矩形ABCD中∠B=∠C=90°,AB=CD.
又∵AF=DE
∴Rt△ABF≌Rt△DCE(HL),
∴BF=CE.
∴BF-EF=CE-EF,即BE=CF;
(2)∵Rt△ABF中,∠2=30°,
∴AF=2AB=1.
∴BF=,
∴BC=BF+FC=,
∴矩形ABCD的面积=AB•BC=5()=
本题主要考查的是矩形的性质、全等三角形的性质和判定、勾股定理的应用,熟练掌握相关知识是解题的关键.
题号
一
二
三
四
五
总分
得分
平均数
中位数
方差
命中10环的次数
甲
7
乙
1
平均数
中位数
方差
命中10环的次数
甲
7
7
4
0
乙
7
7.5
5.4
1
吉林省长春市九台2024年九上数学开学经典试题【含答案】: 这是一份吉林省长春市九台2024年九上数学开学经典试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林省长春市2024-2025学年数学九上开学质量检测模拟试题【含答案】: 这是一份吉林省长春市2024-2025学年数学九上开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年吉林省长春市九台市数学九上开学达标测试试题【含答案】: 这是一份2024年吉林省长春市九台市数学九上开学达标测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。