


2025届湖北省武汉市江汉区数学九年级第一学期开学质量检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是( )
A.①②B.②③C.①②④D.①②③④
2、(4分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连结CE.若▱ABCD的周长为16,则△CDE的周长是( )
A.16B.10C.8D.6
3、(4分)下列各组数中,不是勾股数的为( )
A.3,4,5B.6,8,10C.5,12,13D.5,7,10
4、(4分)在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1>y2,则k取值范围是
( )
A.k≥2B.k>2C.k≤2D.k<2
5、(4分)为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )
A.52和54 B.52
C.53 D.54
6、(4分)下列图形中,中心对称图形有( )
A.1个B.2个C.3个D.4个
7、(4分)如图,在矩形中,,,点是边上一点,将沿折叠,使点落在点处.连结,当为直角三角形时,的长是( )
A.B.C.或D.或
8、(4分)如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知:关于的方程有一个根是2,则________,另一个根是________.
10、(4分)若,则等于______.
11、(4分)不等式2x+8≥3(x+2)的解集为_____.
12、(4分)若一个直角三角形的两直角边长分别是1、2,则第三边长为____________。
13、(4分)若分式在实数范围内有意义,则的取值范围是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
(1) 这个八年级的学生总数在什么范围内?
(2) 若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
15、(8分)计算或解方程:
(1)计算:+;
(2)解方程:
16、(8分)用适当方法解方程:.
17、(10分)在梯形中,,点在直线上,联结,过点作的垂线,交直线与点,
(1)如图1,已知,:求证:;
(2)已知:,
① 当点在线段上,求证:;
② 当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.
18、(10分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V(m3)的反比例函数,且当V=0.8m3时,P=120kPa。
(1)求P与V之间的函数表达式;
(2)当气球内的气压大于100kPa时,气球将爆炸,为确保气球不爆炸,气球的体积应不小于多少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.
20、(4分)若有意义,则m能取的最小整数值是__.
21、(4分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .
22、(4分)在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.
小云的作法如下:
(1)在直线l 上任取一点B,以点B为圆心,AB长为半径作弧, 交直线l 于点C;
(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;
(3)作直线AD.
所以直线AD即为所求.
老师说:“小云的作法正确”.
请回答:小云的作图依据是____________.
23、(4分)如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,CF=8cm,则线段DE=________cm.
二、解答题(本大题共3个小题,共30分)
24、(8分)先化简,再求值:,其中x=,y=.
25、(10分)先化简,再求值:(,其中
26、(12分)如图,直线y1=x+1交x、y轴于点A、B,直线y2=﹣2x+4交x、y轴与C、D,两直线交于点E.
(1)求点E的坐标;
(2)求△ACE的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到
,,求得,得到,于是得到,故④正确.
【详解】
解:过O作于G,于H,
∵四边形是正方形,
,
,,
∵点O是对角线BD的中点,
,,
,,
,
,,
∴四边形是正方形,
,
,
,
在与中,
,
,
,故①正确;,
,
,故②正确;
,
∴四边形的面积正方形的面积,
∴四边形的面积保持不变;故③正确;
,
,,
,
,
,
,
,故④正确;
故选:.
本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.
2、C
【解析】
根据线段垂直平分线性质得出,然后利用平行四边形性质求出,据此进一步计算出△CDE的周长即可.
【详解】
∵对角线的垂直平分线分别交于,
∴,
∵四边形是平行四边形,
∴,
∴,
∴的周长,
故选:C.
本题主要考查了平行四边形性质与线段垂直平分线性质的综合运用,熟练掌握相关概念是解题关键.
3、D
【解析】
满足的三个正整数,称为勾股数,由此判断即可.
【详解】
解:、,此选项是勾股数;
、,此选项是勾股数;
、,此选项是勾股数;
、,此选项不是勾股数.
故选:.
此题主要考查了勾股数,关键是掌握勾股数的定义.
4、B
【解析】
分析:根据反比例函数的性质,可得答案.
详解:由x1<0<x1,y1>y1,得:
图象位于二四象限,1﹣k<0,解得:k<1.
故选B.
点睛:本题考查了反比例函数的性质,利用反比例函数的性质是解题的关键.
5、A
【解析】
试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。
考点:众数的计算
6、C
【解析】
根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.
【详解】
解:∵第一、二、三个图形是中心对称图形;第四个图形不是中心对称图形,
∴共3个中心对称图形.
故选C.
7、D
【解析】
当△CEF为直角三角形时,有两种情况:①当点F落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=10,根据折叠的性质得∠AFE=∠B=90°,而当△CEF为直角三角形时,只能得到∠EFC=90°,所以点 A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,则EB=EF,AB=AF=1,可计算出CF=4,设BE=x,则EF=x,CE=8-x,然后在Rt△CEF中运用勾股定理可计算出x.②当点F落在AD边上时,如图2所示.此时四边形ABEF为正方形.
【详解】
解:当△CEF为直角三角形时,有两种情况:
①当点F落在矩形内部时,如图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=8,
∴AC==10,
∵∠B沿AE折叠,使点B落在点F处,
∴∠AFE=∠B=90°,
当△CEF为直角三角形时,只能得到∠EFC=90°,
∴点A、F、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点F处,如图,
∴EB=EF,AB=AF=1,
∴CF=10-1=4,
设BE=x,则EF=x,CE=8-x,
在Rt△CEF中,
∵EF2+CF2=CE2,
∴x2+42=(8-x)2,
解得x=3,
∴BE=3;
②当点F落在AD边上时,如图2所示.
此时ABEF为正方形,
∴BE=AB=1.
综上所述,BE的长为3或1.
故选D.
本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.
8、C
【解析】
分析:要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.
详解:把圆柱侧面展开,展开图如图所示,点A、C的最短距离为线段AC的长.
在Rt△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=1.5π,
所以AC=,
故选C.
点睛:本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2, 1.
【解析】
设方程x2-3x+a=0的另外一个根为x,根据根与系数的关系,即可解答.
【详解】
解:设方程的另外一个根为,
则,,
解得:,,
故答案为:2,1.
本题主要考查了根与系数的关系及一元二次方程的解,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.
10、
【解析】
依据比例的基本性质,即可得到5a=7b,进而得出=.
【详解】
解:∵,
∴5a-5b=2b,
即5a=7b,
∴=,
故答案为:.
本题主要考查了分式的值,解决问题的关键是利用比例的基本性质进行化简变形.
11、x≤2
【解析】
根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.
【详解】
去括号,得:2x+8≥3x+6,
移项,得:2x-3x≥6-8,
合并同类项,得:-x≥-2,
系数化为1,得:x≤2,
故答案为x≤2
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
12、
【解析】
根据勾股定理计算即可.
【详解】
由勾股定理得,第三边长=,
故答案为:.
本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.
13、x≠1
【解析】
【分析】根据分式有意义的条件进行求解即可得答案.
【详解】由题意得:1-x≠0,
解得:x≠1,
故答案为x≠1.
【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)240人<八年级学生数≤300人
(2)这个学校八年级学生有300人.
【解析】
答:八年级学生总数为人
(1)关系式为:学生数≤300,学生数+60>300列式求值即可;
(2)批发价为每支x元,则零售价为每支元,列方程求解
【详解】
解:(1)有已知,240人<总数≤300人;
(2)批发价为每支x元,则零售价为每支元
可列方程
求得x=
经检验x=符合题意
学生总数为人
15、(1),(2)
【解析】
(1)直接利用零指数幂,有理数的乘方,二次根式的除法法则计算化简即可;
(2)直接利用平方差公式把方程左边分解因式,进而整理为两个一次因式的乘积,最后解一元一次方程即可;
【详解】
解:(1)原式=,
=,
=,
(2)
或
本题主要考查了实数的运算及利用因式分解法解一元二次方程.熟练相关的运算性质和法则及解方程的方法是解题的关键.
16、,
【解析】
利用分解因式法求解即可.
【详解】
解:原方程可化为:,
∴或,
解得:,.
本题考查的是一元二次方程的解法,属于基础题型,熟练掌握分解因式的方法是解题的关键.
17、(1)证明见解析;
(2)①证明见解析;②结论仍然成立,证明见解析.
【解析】
(1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;
(2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;
②
【详解】
(1)如图:
过F作FM⊥AD,交AD的延长线于点M,
∴∠M=90°,
∵∠BEF=90°,
∴∠AEB+MEF=90°,
∵∠A=90°,
∴∠ABE+∠AEB=90°,
∴∠MEF=∠ABE,
在△ABE和△EMF中,
,
∴△ABE≌△EMF(AAS)
∴AB=ME,AE=MF,
∵AM∥BC,∠C=45°,
∴∠MDF=∠C=45°,
∴∠DFM=45°,
∴DM=FM,
∴DM=AE,
∴DM+ED=AE+ED,
即AD=EM,
∴AB=AD;
(2)①证明:如图,
在AB上截取AG=AE,连接EG,则∠AGE=∠AEG,
∵∠A=90°,∠A+∠AGE+∠AEG=180°,
∴∠AGE=45°,
∴∠BGE=135°,
∵AD∥BC,
∴∠C+∠D=180°,
又∵∠C=45°,
∴∠D=135°,
∴∠BGE=∠D,
∵AB=AD,AG=AE,
∴BG=DE,
∵EF⊥BE,
∴∠BEF=90°,
又∵∠A+∠ABE+∠AEB=180°,
∠AEB+∠BEF+∠DEF=180°,
∠A=90°,
∴∠ABE=∠DEF,
在△BGE与△EDF中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF;
②结论仍然成立,证明如下,
如图:
延长BA到点G,使BG=ED,连接EG,
则△EAG是等腰直角三角形,
∴∠EGB=45°,
∵ED∥BC,∠C=45°,
∴∠FDE=45°,
∴∠FDE=45°,
∴∠EGB=∠FDE,
∵∠A=90°,
∴∠AEB+∠ABE=90°,
∵EF⊥EB,
∴∠FED+∠AEB=90°,
∴∠AEB=∠FED,
在△BGE与△EFD中,
,
∴△BGE≌△EDF(ASA),
∴BE=EF.
本题是四边形综合题,考查了等腰直角三角形的性质,梯形的性质,全等三角形的判定和性质,综合性较强,有一定的难度.添加适当的辅助线构造全等三角形是解题的关键.
18、(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
【解析】
(1)设气球内气体的气压P(kPa)和气体体积V(m3)的反比例函数为,将V=0.8时,P=120,代入求出F,再将F的值代入,可得P与V之间的函数表达式。
(2)为确保气球不爆炸,则 时,即,解出不等式解集即可。
【详解】
解:(1)设P与V之间的函数表达式为
当V=0.8时,P=120,
所以
∴F=96
∴P与V之间的函数表达式为
(2)当 时,
∴
∴为确保气球不爆炸,气球的体积应不小于0.96
答(1)P与V之间的函数表达式为;(2)为确保气球不爆炸,气球的体积应不小于0.96
现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=x+1.
【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.
【详解】
气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.
故答案为:y=x+1.
此题主要考查了函数关系式,正确表示出上升的高度是解题关键.
20、1
【解析】
根据二次根式的意义,先求m的取值范围,再在范围内求m的最小整数值.
【详解】
∵若有意义
∴3m﹣1≥0,解得m≥
故m能取的最小整数值是1
本题考查了二次根式的意义以及不等式的特殊解等相关问题.
21、1或.
【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
【详解】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.
22、①四边相等的四边形是菱形②菱形的对边平行
【解析】
利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.
【详解】
由作法得BA=BC=AD=CD,
所以四边形ABCD为菱形,
所以AD∥BC,
故答案为:四条边相等的四边形为菱形,菱形的对边平行.
本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
23、8
【解析】
分析:
由已知条件易得CF是Rt△ABC斜边上的中线,DE是Rt△ABC的中位线,由此可得AB=2CF=2DE,从而可得DE=CF=8cm.
详解:
∵在Rt△ABC中,∠ACB=90°,点D、E、F分别是三边的中点,
∴AB=2CF,AB=2DE,
∴DE=CF=8(cm).
故答案为:8.
点睛:熟记:“直角三角形斜边上的中线等于斜边的一半和三角形的中位线等于第三边的一半”是解答本题的关键.
二、解答题(本大题共3个小题,共30分)
24、x+y,.
【解析】
试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.
试题解析:原式= ==x+y,
当x=,y==2时,原式=﹣2+2=.
25、,.
【解析】
先根据分式混合运算的法则把原式进行化简,再把a=1+代入进行计算即可
【详解】
解:原式===,
当a=1+时,
=.
本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.
26、(1)(1,2)(2)1
【解析】
分析:(1)联立两函数的解析式,解方程组即可;(2)先根据函数解析式求得点A、C的坐标,即可得线段AC的长,再根据三角形的面积公式计算即可.
详解:(1)∵,∴,∴E(1,2);
(2)当y1=x+1=0时,解得:x=﹣1,∴A(﹣1,0),当y2=﹣2x+4=0时,解得:x=2,
∴C(2,0),∴AC=2﹣(﹣1)=1,
==1.
点睛:本题考查了两直线相交或平行的问题,解题的关键是根据两直线解析式求出它们的交点的坐标及它们和x轴的交点的坐标.
题号
一
二
三
四
五
总分
得分
2025届湖北省华中学师大附中数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2025届湖北省华中学师大附中数学九年级第一学期开学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉市江汉区常青第一学校九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024年湖北省武汉市江汉区常青第一学校九年级数学第一学期开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年湖北省武汉市黄陂区数学九年级第一学期开学教学质量检测试题【含答案】: 这是一份2024年湖北省武汉市黄陂区数学九年级第一学期开学教学质量检测试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。