2025届河北省石家庄市栾城区九上数学开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足( )
A.点D是BC的中点
B.点D在∠BAC的平分线上
C.AD是△ABC的一条中线
D.点D在线段BC的垂直平分线上
2、(4分)如图,每个小正方形边长均为1,则下列图中的阴影三角形与左图中相似的是( )
A.B.
C.D.
3、(4分)下列关于的方程中,有实数解的为( )
A.B.
C.D.
4、(4分)用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
5、(4分)若分式方程+3=有增根,则a的值是( )
A.﹣1B.0C.1D.2
6、(4分)化简(﹣)2的结果是( )
A.±3B.﹣3C.3D.9
7、(4分)如图,在▱ABCD中,BM是∠ABC的角平分线且交CD于点M,MC=2,▱ABCD的周长是16,则DM等于( )
A.1B.2C.3D.4
8、(4分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是( )
A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)一个多边形的内角和是 1440°,则这个多边形是__________边形.
10、(4分)当a=+1,b=-1时,代数式的值是________.
11、(4分)一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.则正确的序号有____________.
12、(4分)已知:x=,y=.那么 ______.
13、(4分)如图,将△ABC向右平移到△DEF位置,如果AE=8cm,BD=2cm,则△ABC移动的距离是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)一次函数的图象经过点.
(1)求出这个一次函数的解析式;
(2)求把该函数图象向下平移1个单位长度后得到的函数图象的解析式.
15、(8分)如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点F的坐标为(-1,5),求点E的坐标.
16、(8分)感知:如图①,在正方形中,点在对角线上(不与点、重合),连结、,过点作,交边于点.易知,进而证出.
探究:如图②,点在射线上(不与点、重合),连结、,过点作,交的延长线于点.求证:.
应用:如图②,若,,则四边形的面积为________.
17、(10分)如图,在矩形ABCD中,E是AD上一点,MN垂直平分BE,分别交AD,BE,BC于点M,O,N,连接BM,EN
(1)求证:四边形BMEN是菱形.
(2)若AE=8,F为AB的中点,BF+OB=8,求MN的长.
18、(10分)如图,在中,,,,AB的垂直平分线DE交AB于点D,交AC于点E,连接BE.
(1)求AD的长;
(2)求AE的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若分式的值为零,则x的值为________.
20、(4分)已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.
21、(4分)平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.
22、(4分)根据指令,机器人在平面上能完成下列动作:先原地逆时针旋转角度,再朝其面对的方向沿直线行走距离,现机器人在平面直角坐标系的坐标原点,且面对轴正方向.请你给机器人下一个指令__________,使其移动到点.
23、(4分)方程的根是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)甲、乙两人在笔直的道路上相向而行,甲骑自行车从地到地,乙驾车从地到地,假设他们分别以不同的速度匀速行驶,甲先出6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离(千米)与甲出发的时间(分)之间的部分函数图象如图.
(1)两地相距______千米,甲的速度为______千米/分;
(2)直接写出点的坐标______,求线段所表示的与之间的函数表达式;
(3)当乙到达终点时,甲还需______分钟到达终点.
25、(10分)某市在城中村改造中,需要种植、两种不同的树苗共棵,经招标,承包商以万元的报价中标承包了这项工程,根据调查及相关资料表明,、两种树苗的成本价及成活率如表:
设种植种树苗棵,承包商获得的利润为元.
()求与之间的函数关系式.
()政府要求栽植这批树苗的成活率不低于,承包商应如何选种树苗才能获得最大利润?最大利润是多少?
26、(12分)在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根
据调查结果绘制的两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次调查中,一共调查了 名同学;
(2)条形统计图中,m= ,n= ;
(3)扇形统计图中,艺术类读物所在扇形的圆心角是 度;
(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据角平分线的判定定理解答即可.
【详解】
如图所示,DE为点D到AB的距离.
∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.
故选B.
本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.
2、B
【解析】
根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.
【详解】
解:由勾股定理得:AB=,BC=2,AC=,
∴AB:BC:AC=1::,
A、三边之比为1::,图中的三角形(阴影部分)与△ABC不相似;
B、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;
C、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;
D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.
故选:B.
此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.
3、C
【解析】
根据二次根式必须有意义,可以得到选项中的无理方程是否有解,从而可以解答本题.
【详解】
,
,
即故无解.
A错误;
,
又,
,
即故无解,
B错误;
,
,
即有解,
C正确;
,
,
,故无解.
D错误;
故选C.
此题考查无理方程,解题关键在于使得二次根式必须有意义.
4、B
【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
故选B.
考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
5、B
【解析】
根据分式方程有增根可得出x=2是方程1+3(x-2)=a+1的根,代入x=2即可求出a值.
【详解】
解:∵分式方程+3=有增根,
∴x=2是方程1+3(x-2)=a+1的根,
∴a=1.
故选:B.
本题考查分式方程的增根,熟记分式方程增根的定义是解题的关键.
6、C
【解析】
根据二次根式的性质即可求出答案.
【详解】
原式=3,
故选:C.
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
7、D
【解析】
根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是16,求出CD=6,得到DM的长.
【详解】
解:∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∵AB∥CD,
∴∠ABM=∠BMC,
∴∠BMC=∠CBM,
∴BC=MC=2,
∵▱ABCD的周长是16,
∴BC+CD=8,
∴CD=6,
则DM=CD﹣MC=4,
故选:D.
本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.
8、A
【解析】
分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.
【详解】
令,则,
解得,
故此直线与轴的交点的坐标为;
令,则,
故此直线与轴的交点的坐标为.
故选:.
本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、十
【解析】
利用多边形的内角和定理:n边形的内角和为 便可得.
【详解】
∵n边形的内角和为
∴,.
故答案为:十边形.
本题考查多边形的内角和公式,掌握n边形内角和定理为本题的关键.
10、
【解析】
分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.
详解:∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴====.
故答案为.
点睛:本题考查了分式的值,用到的知识点是完全平方公式、平方差公式和分式的化简,关键是对给出的式子进行化简.
11、①③④
【解析】
根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x>3时,相应的x的值,y1图象均低于y2的图象.
【详解】
根据图示及数据可知:
①k<0正确;
②a<0,原来的说法错误;
③方程kx+b=x+a的解是x=3,正确;
④当x>3时,y1<y2正确.
故答案是:①③④.
考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
12、98
【解析】
把x与y分母有理化,再计算x+y和xy,原式通分整理并利用x+y和xy的结果整体代入计算即可得到结果.
【详解】
解:∵,
,
∴,,
∴=.
故答案为:98.
此题考查了分式的化简,平方差公式的应用,熟练掌握运算法则是解本题的关键.
13、3cm.
【解析】
根据平移的性质,对应点间的距离等于平移距离求出AD、BE,然后求解即可.
【详解】
∵将△ABC向右平移到△DEF位置,
∴BE=AD,
又∵AE=8cm,BD=2cm,
∴AD=cm.
∴△ABC移动的距离是3cm,
故答案为:3cm.
本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1),(2).
【解析】
(1)把点(-1,2)代入即可求解;
(2)根据一次函数的平移性质即可求解.
【详解】
(1)把点(-1,2)代入
即2=-k+4
解得k=2,
∴一次函数为
(2)把向下平移一个单位得到的函数为
此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法确定函数关系式.
15、点E坐标(2,3)
【解析】
过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,由“AAS”可证△AOE≌△PFE,可得AE=PF,PE=AO,即可求点E坐标.
【详解】
解:如图,过点E作AE⊥y轴于点A,过点F作FP⊥AE于点P,
∵四边形是正方形
∴EF=OE,∠FEO=90°
∵∠FEP+∠PEO=90°,∠PEO+∠AOE=90°
∴∠AOE=∠FEP,且EF=OE,∠EPF=∠OAE=90°
∴△AOE≌△PFE(AAS)
∴AE=PF,PE=AO,
∵点F(-1,5)
∴AO+PF=5,PE-AE=1
∴AO=3=PE,AE=2=PF
∴点E坐标(2,3).
本题考查了正方形的性质,全等三角形的判定和性质,坐标与图形的性质,证明△AOE≌△PFE是本题的关键.
16、探究:见解析;应用:
【解析】
探究:由四边形是正方形易证.可得,,由及.可得. 可得即可证;
应用:连结,可得三角形DEF是等腰三角形,利用勾股定理,分别求DF、FC的长度,再别求和的面积即可.
【详解】
探究:四边形是正方形,
,.
.
又,
.
,.
,
.
.
又.
.
.
.
应用: (提示:连结,分别求和的面积)
连结
由=2,∠FED=90°由勾股定理可得:FD= 可得:
∵CD=1,∠FCD=90°由勾股定理可得:FC= 可得:
∴
本题考查了正方形的性质、三角形全等以及勾股定理的运用,灵活运用正方形性质和利用勾股定理计算长度是解题的关键.
17、 (1)证明见解析;(2)MN=.
【解析】
(1)先根据线段垂直平分线的性质证明MB=ME,由ASA证明△BON≌△EOM,得出ME=NB,证出四边形BMEN是平行四边形,再根据菱形的判定即可得出结论;
(2)根据已知条件得到AB+BE=2BF+2OB=16,设AB=x,则BE=16﹣x,根据勾股定理得到x=6,求得BE=16﹣x=10,OB=BE=5,设ME=y,则AM=8﹣y,BM=ME=y,根据勾股定理即可得到结论.
【详解】
(1)证明:∵MN垂直平分BE,
∴MB=ME,OB=OE,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠MEO=∠NBO,
在△BON与△EOM中,,
∴△BON≌△EOM(ASA),
∴ME=NB,
又∵AD∥BC,
∴四边形BMEN是平行四边形,
又∵MB=ME,
∴四边形BMEN是菱形;
(2)解:∵O,F分别为MN,AB的中点,
∴OF∥AD,
∴∠OFB=∠EAB=90°,
∵BF+OB=8,
∴AB+BE=2BF+2OB=16,
设AB=x,则BE=16﹣x,
在Rt△ABE中,82+x2=(16﹣x)2,
解得x=6,
∴BE=16﹣x=10,
∴OB=BE=5,
设ME=y,则AM=8﹣y,BM=ME=y,
在Rt△ABM中,62+(8﹣y)2=y2,
解得y=,
在Rt△BOM中,MO==,
∴MN=2MO=.
本题主要考查菱形的判定及性质,勾股定理,掌握菱形的判定方法及性质,结合勾股定理合理的利用方程的思想是解题的关键.
18、 (1)5;(2)
【解析】
(1)直接利用勾股定理得出AB的长,即可解决问题.
(2)用未知数表示出EC,BE的长,再利用勾股定理得出EC的长,进而得出答案.
【详解】
(1)如图所示:
∵在中,,,,
∴,
∵DE垂直平分AB,
∴.
(2)∵DE垂直平分AB,
∴,
设,则,
故,
解得:,
∴.
此题主要考查了勾股定理以及线段垂直平分线的性质,正确得出EC的长是解题关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.
考点:分式的值为零的条件.
20、-1
【解析】
根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;
【详解】
解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,
∴△=a2−6a+5≥0
∴a≥5或a≤1;
∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,
∵(x1+2)(x2+2)=13,
∴整理得:x1•x2+2(x2+x1)+4=13,
∴2a2−1+2(1−3a)+4=13,
∴a=4或a=−1,
∴a=−1;
故答案为−1.
本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.
21、1.
【解析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.
【详解】
解:∵平行四边形的周长为20cm,
∴AB+BC=10cm;
又△BOC的周长比△AOB的周长大2cm,
∴BC﹣AB=2cm,
解得:AB=1cm,BC=6cm.
∵AB=CD,
∴CD=1cm
故答案为1.
22、 [3,135°].
【解析】
解决本题要根据旋转的性质,构造直角三角形来解决.
【详解】
解:如图所示,设此点为C,属于第二象限的点,过C作CD⊥x轴于点D,
那么OD=DC=3,
∴∠COD=45°,OC=OD÷cs45°=,
则∠AOC=180°−45°=135°,
那么指令为:[,135°]
故答案为:[,135°]
本题考查求新定义下的点的旋转坐标;应理解运动指令的含义,构造直角三角形求解.
23、
【解析】
首先移项,再两边直接开立方即可
【详解】
,
移项得,
两边直接开立方得:,
故答案为:.
此题考查解一元三次方程,解题关键在于直接开立方法即可.
二、解答题(本大题共3个小题,共30分)
24、解:(1)24,;(2),;(3)50
【解析】
(1)由图像可得结论;
(2)根据题意可知F点时甲乙相遇,由此求出F点坐标,用待定系数法即得段所表示的与之间的函数表达式;
(3)先求出乙到达终点时,甲距离B地的路程,再除以速度即得时间.
【详解】
解:(1)由图像可得两地相距24千米,甲的速度为千米/分;
(2)设甲乙相遇时花费的时间为t分,根据题意得,解得
所以,
设线段表示的与之间的函数表达式为,根据题意得,
,
解得,
∴线段表示的与之间的函数表达式为;
(3)因为甲先出6分钟后,乙才出发,所以乙到达A地的时间为分,此时甲走了千米,距离B地千米,甲还需分钟到达终点B.
本题考查了一次函数及图像在路程问题中的应用,正确理解题意及函数图像是解题的关键.
25、();()承包商购买种树苗棵,种树苗棵时,能获得最大利润,最大利润是元.
【解析】
试题分析:(1)根据题意和表格中的数据可以得到y与x的函数关系式;
(2)根据题意可以的得到相应的不等式,从而可以解答本题.
试题解析:()根据题意可得,
,
即与之间的函数关系式是;
()根据题意可得,
,
计算得出,,
∵,
∴当时,取得最大值,此时,
即承包商购买种树苗棵,种树苗棵时,能获得最大利润,最大利润是元.
26、解:(1)1.
(2) 40;2.
(3)3.
(4)学校购买其他类读物900册比较合理.
【解析】
(1)∵从条形图得出文学类人数为:70,从扇形图得出文学类所占百分比为:35%,
∴本次调查中,一共调查了:70÷35%=1人.
(2)∵从扇形图得出科普类所占百分比为:30%,
∴科普类人数为:n=1×30%=2人, 艺术类人数为:m=1﹣70﹣30﹣2=40人.
(3)根据艺术类读物所在扇形的圆心角是:40÷1×32°=3°.
(4)根据喜欢其他类读物人数所占的百分比为 ,
则200册中其他读物的数量: (本).
题号
一
二
三
四
五
总分
得分
品种
购买价(元/棵)
成活率
2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】: 这是一份2024年河北省石家庄市长安区九上数学开学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】: 这是一份2024年河北省石家庄市裕华区数学九上开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】: 这是一份2024年河北省石家庄市第九中学数学九上开学教学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。