2025届贵州省黔东南州凯里六中学九年级数学第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列多项式,能用平方差公式分解的是
A.B.
C.D.
2、(4分)如果不等式组有解,那么m的取值范围是
A.B.C.D.
3、(4分)如图图形中,是中心对称图形,但不是轴对称图形的是( )
A.B.
C.D.
4、(4分)一元一次不等式组的解集在数轴上表示为( ).
A.B.
C.D.
5、(4分)某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( ).
A.1~2月份利润的增长快于2~3月份利润的增长
B.1~4月份利润的极差与1~5月份利润的极差不同
C.1~5月份利润的众数是130万元
D.1~5月份利润的中位数为120万元
6、(4分)如图,在正方形ABCD中,E、F分别是边CD、AD上的点,且CE=DF.AE与BF相交于点O,则下列结论错误的是( )
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四边形DEOF
7、(4分)已知n是自然数,是整数,则n最小为( )
A.0B.2C.4D.40
8、(4分)有19位同学参加歌咏比赛,所得的分数互不相同,取得分前10位的同学进入决赛,某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学分数的( )
A.平均数B.中位数C.众数D.方差
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=20°,则∠2=_____.
10、(4分)函数中自变量的取值范围是_________________.
11、(4分)数据,,,,,,的众数是______.
12、(4分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为_____________
13、(4分)已知三角形两边长分别为2,3,那么第三边的长可以是___________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在四边形中,且,四边形的对角线,相交于,点,分别是,的中点,求证:.
15、(8分)解方程
(1)+=3 (2)
16、(8分)如图,在平面直角坐标系xOy中,点,点,点.
①作出关于y轴的对称图形;
②写出点、、的坐标
(2)已知点,点在直线的图象上,求的函数解析式.
17、(10分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,且在第二象限内运动,试写出△OPA的面积S关于x的函数解析式,并写出自变量x的取值范围.
(3)探究:当点P运动到什么位置时,△OPA的面积为,并说明理由.
18、(10分)(1)如图1,在矩形中,对角线与相交于点,过点作直线,且交于点,交于点,连接,且平分.
①求证:四边形是菱形;
②直接写出的度数;
(2)把(1)中菱形进行分离研究,如图2,分别在边上,且,连接为的中点,连接,并延长交于点,连接.试探究线段与之间满足的关系,并说明理由;
(3)把(1)中矩形进行特殊化探究,如图3,矩形满足时,点是对角线上一点,连接,作,垂足为点,交于点,连接,交于点.请直接写出线段三者之间满足的数量关系.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在菱形ABCD中,∠BAD=70°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.则∠CDF等于_____.
20、(4分)如果正比例函数的图象经过点(1,-2),那么k 的值等于 ▲ .
21、(4分)如图,点B是反比例函数()图象上一点,过点B作x轴的平行线,交轴于点A,点C是轴上一点,△ABC的面积是2,则=______.
22、(4分)在平面直角坐标系中,先将函数y=2x+3的图象向下平移3个单位长度,再沿y轴翻折,所得函数对应的解析式为_____.
23、(4分)因式分解:x2﹣x=______.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在四边形ABCD中,∠ABC=90°,E、F分别是AC、CD的中点,AC=8,AD=6,∠BEF=90°,求BF的长.
25、(10分)某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:
(1)请计算小王面试平均成绩;
(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.
26、(12分)母亲节前夕,某商店从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为3:4,单价和为210元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该商店购进这两种礼盒恰好用去9900元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A钟礼盒可获利12元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.
【详解】
解:A、不能用平方差公式进行分解,故此选项错误;
B、不能用平方差公式进行分解,故此选项错误;
C、能用平方差公式进行分解,故此选项正确;
D、不能用平方差公式进行分解,故此选项错误;
故选C.
此题主要考查了公式法分解因式,关键是掌握能用平方差公式分解的多项式特点.
2、C
【解析】
在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.
【详解】
在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.
故选:C
本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.
3、C
【解析】
根据轴对称图形与中心对称图形的概念求解
【详解】
A. 是轴对称图形,是中心对称图形,不符合题意;
B. 是轴对称图形,是中心对称图形,不符合题意;
C. 不是轴对称图形,是中心对称图形,符合题意;
D. 是轴对称图形,是中心对称图形,不符合题意.
故选C
本题考查轴对称图形与中心对称图形,熟悉概念即可解答.
4、A
【解析】
根据不等式解集的表示方法即可判断.
【详解】
解:
解不等式①得:x>-1,
解不等式②得:x≤2,
∴不等式组的解集是-1<x≤2,
表示在数轴上,如图所示:
.
故选:A.
此题考查解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
5、C
【解析】
根据折线图1~2月以及2~3月的倾斜程度可以得出:
2~3月份利润的增长快于1~2月份利润的增长;故A选项错误,
1~4月份利润的极差为:130-100=30,1~5月份利润的极差为:130-100=30;故B选项错误;
根据只有130出现次数最多,∴130万元是众数,故C选项正确;
1~5月份利润的中位数是:从小到大排列后115万元位于最中间,故D选项错误
6、C
【解析】
试题解析:A、∵在正方形ABCD中,
又
∴≌
故此选项正确;
B、∵≌
故此选项正确;
C、连接
假设AO=OE,
∴
∴≌
又
∴AB不可能等于BE,
∴假设不成立,即
故此选项错误;
D、∵≌
∴S△AOB=S四边形DEOF,故此选项正确.
故选C.
7、C
【解析】
求出n的范围,再根据是整数得出(211-n)是完全平方数,然后求满足条件的最小自然数是n.
【详解】
解:∵n是自然数,是整数,且211-n≥1.
∴(211-n)是完全平方数,且n≤211.
∴(211-n)最大平方数是196,即n=3.
故选:C.
主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则=.除法法则=.解题关键是分解成一个完全平方数和一个代数式的积的形式.
8、B
【解析】
试题分析:因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.
解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.
故选B.
考点:统计量的选择.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、110°
【解析】
已知∠1=20°,可求得∠3=90°-20°=70°,再由矩形的对边平行,根据两直线平行,同旁内角互补可得∠2+∠3=180°,即可得∠2=110°.
10、且
【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.
【详解】
根据分式和二次根式有意义的条件可得
解得且
故答案为:且.
本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.
11、4
【解析】
根据众数概念分析即可解答.
【详解】
数据中出现次数最多的数为众数,故该组数据的众数为4
故答案为:4
本题为考查众数的基础题,难度低,熟练掌握众数概念是解答本题的关键.
12、2
【解析】
解:∵四边形ABCD是菱形,AC=2,BD=,
∴∠ABO=∠CBO,AC⊥BD.
∵AO=1,BO=,
∴AB=2,
∴sin∠ABO==
∴∠ABO =30°,
∴∠ABC=∠BAC =60°.
由折叠的性质得,EF⊥BO,BE=EO,BF=FO,∠BEF=∠OEF,;
∵∠ABO=∠CBO,
∴BE=BF,
∴△BEF是等边三角形,
∴∠BEF=60°,
∴∠OEF=60°,
∴∠AEO=60°,
∵∠BAC =60°.
∴△AEO是等边三角形,,
∴AE=OE,
∴BE=AE,同理BF=FC,
∴EF是△ABC的中位线,
∴EF=AC=1,AE=OE=1.
同理CF=OF=1,
∴五边形AEFCD的周长为=1+1+1+2+2=2.
故答案为2.
13、2(答案不唯一).
【解析】
根据三角形的三边关系可得3-2<第三边长<3+2,再解可得第三边的范围,然后可得答案.
【详解】
解:设第三边长为x,由题意得:
3-2<x<3+2,
解得:1<x<1.
故答案为:2(答案不唯一).
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.
三、解答题(本大题共5个小题,共48分)
14、见解析
【解析】
据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE是平行四边形,从而得出BE=DF.
【详解】
解:证明:连接BF、DE,如图所示:
∵,,
∴四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵E、F分别是OA、OC的中点,
∴OE=OA,OF=OC,
∴OE=OF,
∴四边形BFDE是平行四边形,
∴BE=DF.
本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.
15、 (1)x=;(2)x=1
【解析】
(1)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
(2)按步骤:①去分母;②求出整式方程的解;③检验;④得出结论解分式方程;
【详解】
(1)+=3
3-2=3(2x-2)
1=6x-6
x=,
当x=时,2x-2≠0,所以x=是方程的解;
(2)
x-3+2(x+3)=6
x-3+2x+6=6
3x=3
x=1.
当x=1时,x2-9≠0,所以x=1是方程的解.
考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
16、 (1)①详见解析;②、、;(2)
【解析】
①依据轴对称的性质,即可得到△ABC关于y轴的对称图形△A1B1C1;②依据△A1B1C1的位置,即可得到点A1、B1、C1的坐标;
【详解】
解:(1)①作图如下.
②、、.
(2)由题意,
解得
∴函数解析式为.
本题主要考查了利用轴对称变换作图以及待定系数法的运用,掌握轴对称的性质是解决问题的关键.
17、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.
【解析】
(1)将点E坐标(﹣8,0)代入直线y=kx+6就可以求出k值,从而求出直线的解析式;
(2)由点A的坐标为(﹣6,0)可以求出OA=6,求△OPA的面积时,可看作以OA为底边,高是P点的纵坐标的绝对值.再根据三角形的面积公式就可以表示出△OPA.从而求出其关系式;根据P点的移动范围就可以求出x的取值范围.
(3)分点P在x轴上方与下方两种情况分别求解即可得.
【详解】
(1)∵直线y=kx+6过点E(﹣8,0),
∴0=﹣8k+6,
k=;
(2)∵点A的坐标为(﹣6,0),
∴OA=6,
∵点P(x,y)是第二象限内的直线上的一个动点,
∴△OPA的面积S=×6×(x+6)=x+18 (﹣8<x<0);
(3)设点P的坐标为(m,n),则有S△AOP=,
即,
解得:n=±,
当n=时,=x+6,解得x=,
此时点P在x轴上方,其坐标为(,);
当n=-时,-=x+6,解得x=,
此时点P在x轴下方,其坐标为(,),
综上,点P坐标为:(,)或(,).
本题考查了待定系数法、三角形的面积、点坐标的求法,熟练掌握待定系数法、正确找出各量间的关系列出函数解析式,分情况进行讨论是解题的关键.
18、 (1)①见解析;②60°;(1)见解析;(3)见解析.
【解析】
(1)①由△DOE≌△BOF,推出EO=OF,由OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可;②先证明∠ABD=1∠ADB,推出∠ADB=30°,即可解决问题;
(1)延长到,使得,连接,由菱形性质,,得,由此,由ASA可证得,由此,故
,由,可证得是等边三角形,可得,,由SAS可证,可得,即是等边三角形,
在中,由,,可得,由此可得;
(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形是矩形,
∴,
∴,
在和中,
,
∴,
∴,
∵,
∴四边形是平行四边形,
∵,
∴,
∴四边形是菱形.
②∵四边形是菱形,
∴,
∵平分,
∴,
∴=,
∵四边形是矩形,
∴A=,
∴+=,
∴==,
∴;
(1)结论:.
理由:如图1中,延长到,使得,连接.
∵四边形是菱形,,
∴,
∴,
在和中,
,
∴,
∴,
∴,
∴,
∵,
∴是等边三角形,
∴,
在和中,
,
∴,
∴,,
∵,
∴,
∵,
∴,
∴,
∴是等边三角形,
在中,∵,,
∴,
∴.
(3)结论:.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°,
∴EC1+CM1=EM1,
∵EG=EM,AG=CM,
∴GE1=AG1+CE1.
本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、75°
【解析】
根据菱形的性质求出∠ADC=110°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.
【详解】
解:连接BD,BF,
∵∠BAD=70°,
∴∠ADC=110°,
又∵EF垂直平分AB,AC垂直平分BD,
∴AF=BF,BF=DF,
∴AF=DF,
∴∠FAD=∠FDA=35°,
∴∠CDF=110°-35°=75°.
故答案为75°.
此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注意先先连接BD,BF,这是解答本题的突破口.
20、-2
【解析】
将(1,-2)代入得,—2=1×k,解得k=-2
21、1
【解析】
根据在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|=2,再根据反比例函数的图象位于第一象限即可求出k的值.
【详解】
连接OB.
∵AB∥x轴,∴S△AOB=S△ACB=2,根据题意可知:S△AOB|k|=2,又反比例函数的图象位于第一象限,k>0,则k=1.
故答案为1.
本题考查了反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.
22、y=-2x.
【解析】
利用平移规律得出平移后的关系式,再利用关于y轴对称的性质得出答案。
【详解】
将函数y=2x+3的图象向下平移3个单位长度,所得的函数是y=2x+3-3,即y=2x
将该函数的图象沿y轴翻折后所得的函数关系式y=2(-x),即y=-2x,
故答案为y=-2x.
本题主要考查了一次函数图象与几何变换,正确得出平移后的函数关系式是解题的关键。
23、x(x﹣1)
【解析】分析:提取公因式x即可.
详解:x2−x=x(x−1).
故答案为:x(x−1).
点解:本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、2
【解析】
根据三角形中位线定理和直角三角形斜边上的中线推知BE=4,EF=1,再由勾股定理计算BF的长度即可.
【详解】
∵E、F分别是AC、CD的中点,
∴EF=AD,
∵AD=6,
∴EF=1.
∵∠ABC=90°,E是CA的中点,
∴BE=AC=4,
∵∠BEF=90°,
∴BF===2.
本题考查了直角三角形斜边上的中线,根据三角形中位线定理和直角三角形斜边上的中线推知△BEF两直角边的长是解题的关键.
25、(1)小王面试平均成绩为88分(2)小王的最终成绩为89. 6分
【解析】
(1)(分)
∴小王面试平均成绩为88分
(2)(分)
∴小王的最终成绩为89. 6分
26、(1)A种礼盒单价为90元,B种礼盒单价为120元;(2)见解析;(3)1320元.
【解析】
(1)利用A、B两种礼盒的单价比为3:4,单价和为210元,得出等式求出即可;
(2)利用两种礼盒恰好用去9900元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;
(3)首先表示出店主获利,进而利用w,m关系得出符合题意的答案.
【详解】
(1)设A种礼盒单价为3x元,B种礼盒单价为4x元,
则:3x+4x=210,
解得x=30,
所以A种礼盒单价为3×30=90元,
B种礼盒单价为4×30=120元.
(2)设A种礼盒购进a个,购进B种礼盒b个,
则:90a+120b=9900,
可列不等式组为:,
解得:30≤a≤36,
因为礼盒个数为整数,所以符合的方案有2种,分别是:
第一种:A种礼盒30个,B种礼盒60个,
第二种:A种礼盒34个,B种礼盒57个.
(3)设该商店获利w元,由(2)可知:w=12a+(18﹣m)b,a=110-,
则w=(2﹣m)b+1320,
若使所有方案都获利相同,则令2﹣m=0,得m=2,
此时店主获利1320元.
此题主要考查了一元一次方程的应用以及一次函数的应用和一元一次不等式的应用,根据题意结合得出正确等量关系是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
面试
笔试
成绩
评委1
评委2
评委3
92
88
90
86
2025届贵州省黔东南州九年级数学第一学期开学考试模拟试题【含答案】: 这是一份2025届贵州省黔东南州九年级数学第一学期开学考试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年贵州省凯里市华鑫实验学校九上数学开学学业质量监测模拟试题【含答案】: 这是一份2024-2025学年贵州省凯里市华鑫实验学校九上数学开学学业质量监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
贵州省黔东南州凯里六中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案: 这是一份贵州省黔东南州凯里六中学2023-2024学年数学九年级第一学期期末经典模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知二次函数的图象,计算的值是等内容,欢迎下载使用。