2025届广西玉林玉州区七校联考九年级数学第一学期开学质量跟踪监视试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知,则的值等于( )
A.6B.-6C.D.
2、(4分)成都是一个历史悠久的文化名城,以下这些图形都是成都市民熟悉的,其中是中心对称图形的是( )
A.B.C.D.
3、(4分)已知在△ABC中,AB=AC,AB的垂直平分线交线段AC于D,若△ABC和△DBC的周长分别是60 cm和38 cm,则△ABC的腰长和底边BC的长分别是( )
A.22cm和16cmB.16cm和22cm
C.20cm和16cmD.24cm和12cm
4、(4分)某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
A.最喜欢篮球的人数最多B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生D.最喜欢田径的人数占总人数的10 %
5、(4分)某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为( )
A.B.C.D.
6、(4分)(2013年四川绵阳3分)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=【 】
A.cm B.cm C.cm D.cm
7、(4分)如图, □ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于 ( )
A.40°B.60°C.80°D.100°
8、(4分)如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是( )
A.20B.15C.10D.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,将绕着直角顶点顺时针旋转,得到,连接,若,则__________度.
10、(4分)在一次数学单元考试中,某小组6名同学的成绩(单位:分)分别是:65,80,70,90,100,70。则这组数据的中位数分别是_________________________分。
11、(4分)在函数y=中,自变量x的取值范围是
12、(4分)不等式组的所有整数解的积是___________.
13、(4分)已知:一组数据,,,,的平均数是22,方差是13,那么另一组数据,,,,的方差是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为A(﹣3,0),与y轴交点为B,且与正比例函数y=x的图象交于点C(m,4)
(1)求m的值及一次函数y=kx+b的表达式;
(2)观察函数图象,直接写出关于x的不等式x≤kx+b的解集;
(3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
15、(8分)已知a、b、c满足(a﹣3)2|c﹣5|=1.
求:(1)a、b、c的值;
(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.
16、(8分)如图1,一次函数的图象与反比例函数的图象交于)两点与x轴,y轴分别交于A、B(0,2)两点,如果的面积为6.
(1)求点A的坐标;
(2)求一次函数和反比例函数的解析式;
(3)如图2,连接DO并延长交反比例函数的图象于点E,连接CE,求点E的坐标和的面积
17、(10分)如图,已知直线和上一点,用尺规作的垂线,使它经过点.(保留作图痕迹,不写作法)
18、(10分)在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连结BE.
(感知)如图①,过点A作AF⊥BE交BC于点F.易证△ABF≌△BCE.(不需要证明)
(探究)如图②,取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连结CM,若CM=1,则FG的长为 .
(应用)如图③,取BE的中点M,连结CM.过点C作CG⊥BE交AD于点G,连结EG、MG.若CM=3,则四边形GMCE的面积为 .
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在△ABC中,D、E分别为AB、AC的中点,点F在DE上,且AF⊥CF,若AC=3,BC=5,则DF=_____.
20、(4分)将直线y=2x﹣2向右平移1个单位长度后所得直线的解析式为y=_____.
21、(4分)如图是一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②′,…,依此类推,若正方形①的边长为64cm,则正方形⑦的边长为 cm.
22、(4分)如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为_____.
23、(4分)如图,在边长为1的菱形ABCD中,∠ABC=120°连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°连接AE,再以AE为边作第三个菱形AEGH,使∠AEG=120°,…,按此规律所作的第n个菱形的边长是________.
二、解答题(本大题共3个小题,共30分)
24、(8分)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照“提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题:
(1)“基础电价”是____________元 度;
(2)求出当x>240 时,y与x的函数表达式;
(3)若紫豪家六月份缴纳电费132元,求紫豪家这个月用电量为多少度?
25、(10分)已知:线段、.
求作:,使,,
26、(12分)求不等式组的正整数解.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由已知可以得到a-b=-4ab,把这个式子代入所要求的式子,化简就得到所求式子的值是6,故选A
2、C
【解析】
根据中心对称图形的概念判断即可.
【详解】
解:A、B、D中的图形都不是中心对称图形,
C中图形是中心对称图形;
故选:C.
本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,这个图形就叫做中心对称图形.
3、A
【解析】
根据已知条件作出图像,连接BD,根据垂直平分线的性质可得BD=AD,可知两三角形的周长差为AB,结合条件可求出腰长,再由周长可求出BC,即可得出答案.
【详解】
如图,连接BD,
∵D在线段AB的垂直平分线上,
∴BD=AD,
∴BD+DC+BC=AC+BC=38cm,
且AB+AC+BC=60cm,
∴AB=60-38=22cm,
∴AC=22cm,
∴BC=38-AC=38-22=16cm,
即等腰三角形的腰为22cm,底为16cm,
故选A.
此题主要考查垂直平分线的性质,解题的关键是正确作出辅助线再来解答.
4、C
【解析】
【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
【详解】观察直方图,由图可知:
A. 最喜欢足球的人数最多,故A选项错误;
B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
故选C.
【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
5、D
【解析】
解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.
点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.
6、B。
【解析】∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm。,
在Rt△AOB中,,
∵BD×AC=AB×DH,∴DH=cm。
在Rt△DHB中,,AH=AB﹣BH=cm。
∵,∴GH=AH=cm。故选B。
考点:菱形的性质,勾股定理,锐角三角函数定义。
7、A
【解析】
分析:由平行四边形的性质得出AD∥BC,得出∠DAB=180°-100°=80°,由角平分线的定义得出∠DAE=∠DAB=40°即可.
详解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠BAD+∠B=180°,
∴∠DAB=180°−100°=80°,
∵AE平分∠DAB,
∴∠DAE=∠DAB=40°;
点睛:本题主要考查了平行四边形的性质,关键在于理解平行四边形的对边互相平行.
8、C
【解析】
试题分析::∵D、E分别是△ABC的边BC、AB的中点,
∴DE=AC,同理 EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.
故选C.
考点:三角形的中位线定理
二、填空题(本大题共5个小题,每小题4分,共20分)
9、70
【解析】
首先由旋转的性质,得△ABC≌△A′B′C,然后利用等腰直角三角形的性质等角转换,即可得解.
【详解】
由旋转的性质,得△ABC≌△A′B′C,
∴AC=A′C,∠BAC=∠B′A′C,∠ACA′=90°,
∴∠CAA′=∠CA′A=45°
∵
∴∠BAC=25°
∴∠BAA′=∠BAC+∠CAA′=25°+45°=70°
故答案为:70.
此题主要考查利用全等三角形旋转求解角度,熟练掌握,即可解题.
10、75
【解析】
根据中位数的定义即可求解.
【详解】
先将数据从小到大排序为65,70,70,80,90,100,
故中位数为(70+80)=75
此题主要考查中位数的求解,解题的关键是熟知中位数的定义.
11、.
【解析】
求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须.
12、1
【解析】
先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.
【详解】
由1-2x<3,得:x>-1,
由 ≤2,得:x≤3,
所以不等式组的解集为:-1<x≤3,
它的整数解为1、1、2、3,
所有整数解的积是1.
故答案为1.
此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
13、1.
【解析】
根据平均数,方差的公式进行计算.
【详解】
解:依题意,得==22,
∴=110,
∴3a-2,3b-2,3c-2,3d-2,3e-2的平均数为
==×(3×110-2×5)=64,
∵数据a,b,c,d,e的方差13,
S2=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]=13,
∴数据3a-2,3b-2,3c-2,3d-2,3e-2方差
S′2=[(3a-2-64)2+(3b-2-64)2+(3c-2-64)2+(3d-2-64)2+(3e-2-64)2]
=[(a-22)2+(b-22)2+(c-22)2+(d-22)2+(e-22)2]×9
=13×9
=1.
故答案为:1.
本题考查了平均数、方差的计算.关键是熟悉计算公式,会将所求式子变形,再整体代入.
三、解答题(本大题共5个小题,共48分)
14、(1)y=x+2;(2)x≤3;(3)P 的坐标为(0,)或(0,﹣).
【解析】
(1)把点C(m,4)代入正比例函数y=x即可得到m的值,把点A和点C的坐标代入y=kx+b求得k,b的值即可;
(2)根据图象解答即可写出关于x的不等式x≤kx+b的解集;
(3)点C的坐标为(3,4),说明点C到y轴的距离为3,根据△BPC的面积为8,求得BP的长度,进而求出点P的坐标即可.
【详解】
(1)∵点C(m,4)在正比例函数的y=x图象上,
∴m=4,
∴m=3,
即点C坐标为(3,4),
∵一次函数 y=kx+b经过A(﹣3,0)、点C(3,4)
∴,
解得:,
∴一次函数的表达式为:y=x+2;
(2)由图象可得不等式x≤kx+b的解为:x≤3;
(3)把x=0代入y=x+2得:y=2,
即点B的坐标为(0,2),
∵点P是y轴上一点,且△BPC的面积为8,
∴×BP×3=8,
∴PB=,
又∵点B的坐标为(0,2),
∴PO=2+=,或PO=-+2=-,
∴点P 的坐标为(0,)或(0,﹣).
本题考查了待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,分析图象并结合题意列出符合要求的等式是解题的关键.
15、(1)a=3,b=4,c=5;(2)能构成三角形,且它的周长=2.
【解析】
(1)根据平方、算术平方根及绝对值的非负性即可得到答案;
(2)根据勾股定理的逆定理即可证明三角形是直角三角形,再计算周长即可.
【详解】
(1)∵,
又∵(a﹣3)2≥1,,|c﹣5|≥1,
∴a﹣3=1,b﹣4=1,c﹣5=1,
∴a=3,b=4,c=5;
(2)∵32+42=52,
∴此△是直角三角形,
∴能构成三角形,且它的周长l=3+4+5=2.
此题考查平方、算术平方根及绝对值的非负性,勾股定理的逆定理.
16、(1)A(﹣4,0);(2),;(3),8
【解析】
(1)由三角形面积求出OA=4,即可求得A(-4,0).
(2)利用待定系数法即可求出一次函数的解析式,进而求得C点的坐标,把C点的坐标代入,求出m的值,得到反比例函数的解析式;
(3)先联立两函数解析式得出D点坐标,根据中心对称求得E点的坐标,然后根据三角形的面积公式计算△CED的面积即可.
【详解】
(1)如图1,
∵,
∴,
∴,
∵的面积为6,
∴,
∵,
∴OA=4,
∴A(﹣4,0);
(2)如图1,把代入得,
解得,
∴一次函数的解析式为,
把代入得,,
∴,
∵点C在反比例函数的图象上,
∴m=2×3=6,
∴反比例函数的解析式为;
(3)如图2,作轴于F,轴于H,
解,得,,
∴,
∴,
∴=
此题考查一次函数与反比例函数的交点问题,待定系数法求函数解析式,函数图象上点的坐标特征,三角形面积的计算,注意数形结合的思想运用.
17、见解析
【解析】
根据线段垂直平分线的作法即可得出结论.
【详解】
解:如图所示.
本题考查了作图-基本作图,掌握线段垂直平分线的作法是解题的关键.
18、(1)证明见解析;(1)1,2.
【解析】
【分析】感知:利用同角的余角相等判断出∠BAF=∠CBE,即可得出结论;
探究:(1)判断出PG=BC,同感知的方法判断出△PGF≌CBE,即可得出结论;
(1)利用直角三角形的斜边的中线是斜边的一半,
应用:借助感知得出结论和直角三角形斜边的中线是斜边的一半即可得出结论.
【详解】感知:∵四边形ABCD是正方形,
∴AB=BC,∠BCE=∠ABC=20°,
∴∠ABE+∠CBE=20°,
∵AF⊥BE,
∴∠ABE+∠BAF=20°,
∴∠BAF=∠CBE,
在△ABF和△BCE中,
,
∴△ABF≌△BCE(ASA);
探究:(1)如图②,
过点G作GP⊥BC于P,
∵四边形ABCD是正方形,
∴AB=BC,∠A=∠ABC=20°,
∴四边形ABPG是矩形,
∴PG=AB,∴PG=BC,
同感知的方法得,∠PGF=∠CBE,
在△PGF和△CBE中,
,
∴△PGF≌△CBE(ASA),
∴BE=FG;
(1)由(1)知,FG=BE,
连接CM,
∵∠BCE=20°,点M是BE的中点,
∴BE=1CM=1,
∴FG=1,
故答案为:1.
应用:同探究(1)得,BE=1ME=1CM=6,
∴ME=3,
同探究(1)得,CG=BE=6,
∵BE⊥CG,
∴S四边形CEGM=CG×ME=×6×3=2,
故答案为:2.
【点睛】本题是四边形综合题,主要考查了正方形的性质,同角的余角相等,全等三角形的判定和性质,直角三角形的性质,熟练掌握相关的性质与定理、判断出CG=BE是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1
【解析】
根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.
【详解】
解:∵D、E分别为AB、AC的中点,
∴DE=BC=2.5,
∵AF⊥CF,E为AC的中点,
∴EF=AC=1.5,
∴DF=DE﹣EF=1,
故答案为:1.
本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
20、2x﹣4
【解析】
试题解析:从原直线上找一点(1,0),向右平移一个单位长度为(2,0),
它在新直线上,可设新直线的解析式为:,代入得
故所得直线的解析式为:
故答案为:
21、8
【解析】
试题分析:根据图形以及等腰直角三角形的性质可得:正方形①的边长为64cm;正方形②的边长为32cm;正方形③的边长为32cm;正方形④的边长为16cm;正方形⑤的边长为16cm;正方形⑥的边长为8cm;正方形⑦的边长为8cm.
考点:等腰直角三角形的性质
22、2
【解析】
设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.
【详解】
解:设AC与BD的交点为O
∵四边形ABCD是平行四边形
∴AD=BC=2,AD∥BC
AO=CO=1,BO=DO
∵AC⊥BC
∴BO==
∴BD=2.
故答案为2.
本题考查了平行四边形的性质和勾股定理,关键是灵活运用平行四边形的性质解决问题.
23、
【解析】
连接DB,
∵四边形ABCD是菱形,
∴AD=AB,AC⊥DB,
∵∠DAB=60°,
∴△ADB是等边三角形,
∴DB=AD=1,
∴BM=,
∴AM=,
∴AC=,
同理可得AE=AC=()2,AG=AE=3=()3,
按此规律所作的第n个菱形的边长为()n−1,
故答案为()n−1.
点睛:本题是一道找规律的题目.探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.
二、解答题(本大题共3个小题,共30分)
24、(1)0.5(2)y=0.6x-24(3)紫豪家这个月用电量为260度
【解析】
(1)由用电240度费用为120元可得;
(2)当x>240时,待定系数法求解可得此时函数解析式;
(3)由132>120知,可将y=132代入(2)中函数解析式求解可得.
【详解】
(1)“基础电价”是120÷240=0.5元/度,
故答案为0.5;
(2)设表达式为y=kx+b(k≠0),
∵过A(240,120),B(400,216),
∴,
解得: ,
∴表达式为y=0.6x-24;
(3)∵132>120,
∴当y=132时,0.6x-24=132,
∴x=260,
答:紫豪家这个月用电量为260度.
本题考查了一次函数的应用,涉及一次函数的图象、待定系数法等,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,理解每个区间的实际意义是解题关键.
25、见解析
【解析】
直接利用作一角等于直角的作法得出∠BAC=90°,再截取AB=c,进而以B为圆心,BC=a的长为半径画弧,得出C点位置,进而得出答案.
【详解】
解:如图:
作一角等于直角的作法得出∠BAC=90°,
再截取AB=c,进而以B为圆心,BC=a的长为半径画弧,得出C点位置,
连接CB,△ACB即为所求三角形.
本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
26、正整数解为3,1.
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
由①得:x>2,
由②得:x≤1,
∴原不等式组的解集为2<x≤1,
∴不等式组的正整数解为3,1.
本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.
题号
一
二
三
四
五
总分
得分
2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年山东省济南七校联考数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024-2025学年哈尔滨松北区七校联考九年级数学第一学期开学质量跟踪监视模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
广西玉林玉州区七校联考2023-2024学年九上数学期末教学质量检测模拟试题含答案: 这是一份广西玉林玉州区七校联考2023-2024学年九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了如图,△OAB∽△OCD,OA,下列事件属于必然事件的是等内容,欢迎下载使用。