2025届广东外语外贸大附设外语学校九上数学开学经典试题【含答案】
展开
这是一份2025届广东外语外贸大附设外语学校九上数学开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在平行四边形中,,,,点是折线上的一个动点(不与、重合).则的面积的最大值是( )
A.B.1C.D.
2、(4分)计算=( )
A.B.C.D.
3、(4分)点(﹣2,﹣1)在平面直角坐标系中所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
4、(4分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30°B.36°C.54°D.72°
5、(4分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区 户家庭一周的使用数量,结果如下(单位:个):,,,,,,,,,.关于这组数据,下列结论错误的是( )
A.极差是 B.众数是 C.中位数是 D.平均数是
6、(4分)如图,在△ABC中,D,E,F分别是AB,BC,AC边的中点.如果添加一个条件,使四边形ADEF是菱形,则添加的条件为( )
A.AB=ACB.AC=BCC.∠A=90°D.∠A=60°
7、(4分)下列调查:
(1)为了检测一批电视机的使用寿命;
(2)为了调查全国平均几人拥有一部手机;
(3)为了解本班学生的平均上网时间;
(4)为了解中央电视台春节联欢晚会的收视率.
其中适合用抽样调查的个数有( )
A.1个B.2个C.3个D.4个
8、(4分)数据1、5、7、4、8的中位数是
A.4B.5C.6D.7
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为_____.
10、(4分)过多边形某个顶点的所有对角线,将这个多边形分成个三角形,这个多边形是________.
11、(4分)已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.
12、(4分)分解因式:= .
13、(4分)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系式.根据题中所给信息解答以下问题:
(1)甲、乙两地之间的距离为______km;图中点C的实际意义为:______;慢车的速度为______,快车的速度为______;
(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;
(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.
15、(8分)如图,在矩形中,.
(1)请用尺规作图法,在矩形中作出以为对角线的菱形,且点分别在上.(不要求写作法,保留作图痕迹)
(2)在(1)的条件下,求菱形的边长.
16、(8分)某工厂现有甲种原料360 kg,乙种原料290 kg,计划利用这两种原料生产A,B两种产品共50件.已知生产1件A种产品,需要甲种原料9 kg,乙种原料3 kg,可获利润700元;生产1件B种产品,需要甲种原料4 kg,乙种原料10 kg,可获利润1 200元.
(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.
(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少.
17、(10分)先化简,再求值:(a+)÷,其中a=1.
18、(10分)某车间加工1200个零件后,采用新工艺,工效提升了20%,这样加工同样多的零件就少用10h,采用新工艺前、后每小时分别加工多少个零件?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式在实数范围内有意义,则实数x的取值范围是_____.
20、(4分)在平面直角坐标xOy中,点O是坐标原点,点B的坐标是(m,m-4),则OB的最小值是__________.
21、(4分)如图,矩形中,,,点是边上一点,连接,把沿折叠,使点落在点处.当为直角三角形时,则的长为________.
22、(4分)分式方程的解为_____.
23、(4分)如图, 和都是等腰直角三角形, ,的顶点在的斜边上,若,则____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,平行四边形的对角线,相交于点,是等边三角形.
(1)求证:平行四边形为矩形;
(2)若,求四边形的面积.
25、(10分)如图,在中,点为边的中点,点在内,平分点在上,.
(1)求证:四边形是平行四边形;
(2)线段之间具有怎样的数量关系?证明你所得到的结论.
26、(12分)已知一次函数的图象过点A(0,3)和点B(3,0),且与正比例函数的图象交于点P.
(1)求函数的解析式和点P的坐标.
(2)画出两个函数 的图象,并直接写出当时的取值范围.
(3)若点Q是轴上一点,且△PQB的面积为8,求点Q的坐标.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
分三种情况讨论:①当点E在BC上时,高一定,底边BE最大时面积最大;②当E在CD上时,△ABE的面积不变;③当E在AD上时,E与D重合时,△ABE的面积最大,根据三角形的面积公式可得结论.
【详解】
解:分三种情况:
①当点E在BC上时,E与C重合时,△ABE的面积最大,如图1,
过A作AF⊥BC于F,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠C+∠B=180°,
∵∠C=120°,
∴∠B=60°,
Rt△ABF中,∠BAF=30°,
∴BF=AB=1,AF=,
∴此时△ABE的最大面积为:×4×=2;
②当E在CD上时,如图2,此时,△ABE的面积=S▱ABCD=×4×=2;
③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=2,
综上,△ABE的面积的最大值是2;
故选:D.
本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.
2、A
【解析】
直接利用二次根式的性质化简得出答案.
【详解】
解:原式==.
故选:A.
此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.
3、C
【解析】
根据横纵坐标的符号可得相关象限.
【详解】
∵点的横纵坐标均为负数,
∴点(-1,-2)所在的象限是第三象限,
故选C.
本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.
4、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
5、B
【解析】
试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:
A、极差=14﹣7=7,结论正确,故本选项错误;
B、众数为7,结论错误,故本选项正确;
C、中位数为8.5,结论正确,故本选项错误;
D、平均数是8,结论正确,故本选项错误.
故选B.
6、A
【解析】
由题意利用中位线性质和平行四边形判定四边形ADEF是平行四边形,再寻找条件使得相邻两边相等即可判断选项.
【详解】
解:∵在△ABC中,D,E,F分别是AB,BC,AC边的中点,
∴DE和EF为中位线,EF//AB,DE//AC,
∴四边形ADEF是平行四边形,
当AB=AC,则有AD=AF,
证得四边形ADEF是菱形,故AB=AC满足条件.
故选:A.
本题考查菱形的性质与证明,熟练掌握中位线性质和平行四边形的判定是解题的关键.
7、C
【解析】
试题分析:根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.
解:(1)为了检测一批电视机的使用寿命适用抽样调查;
(2)为了调查全国平均几人拥有一部手机适用抽样调查;
(3)为了解本班学生的平均上网时间适用全面调查;
(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;
故选C.
8、B
【解析】
根据中位数的定义进行解答即可得出答案.
【详解】
将数据从小到大重新排列为:1、4、5、7、8,
则这组数据的中位数为5,
故选B.
本题考查了中位数的定义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
设共有x个班级参赛,根据每一个球队和其他球队都打(x﹣1)场球,但每两个球队间只有一场比赛,可得总场次=×球队数×(球队数-1),据此列方程即可.
【详解】
有x个班级参赛,根据题意,
得=15,
故答案为:=15.
本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
10、
【解析】
根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.
【详解】
解:设这个多边形是n边形,由题意得,n-2=7,
解得:n=9,
故答案为:9.
本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
11、
【解析】
先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.
【详解】
∵3x - m+1>0,
∴3x> m-1,
∴x>,
∵不等式3x - m+1>0的最小整数解为2,
∴1≤
相关试卷
这是一份2024年广东省肇庆市九上数学开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省梅州大埔县联考数学九上开学经典试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广东外语外贸大附设外语学校2023-2024学年数学九年级第一学期期末联考试题含答案,共7页。