2025届广东省深圳市平冈中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP的长不可能是( )
A.3.5B.4.2C.5.8D.7
2、(4分)如图,在四边形中,是边的中点,连接并延长,交的延长线于点,.添加一个条件使四边形是平行四边形,你认为下面四个条件中可选择的是( )
A.B.C.D.
3、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
4、(4分)若直线y=3x+6与直线y=2x+4的交点坐标为(a,b),则解为的方程组是( )
A.B.C.D.
5、(4分)已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )
A.4B.16C.D.4或
6、(4分)如图,、两点在反比例函数的图象上,、两点在反比例函数的图象上,轴于点,轴于点,,,,则的值是( )
A.8B.6C.4D.10
7、(4分)在一个不透明的盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,、从盒子里任意摸出1个球,摸到红球的概率是( )
A.B.C.D.
8、(4分)武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价为x元,依据题意列方程正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算__________.
10、(4分)已知:,则______.
11、(4分)如图,矩形ABCD的两条对角线相交于点O,若∠AOD=60°,AD=2,则AC的长为_____.
12、(4分)在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.
13、(4分)已知直线,则直线关于轴对称的直线函数关系式是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)学校准备购买纪念笔和记事本奖励同学,纪念笔的单价比记事本的单价多4元,且用30元买记事本的数量与用50元买纪念笔的数量相同.求纪念笔和记事本的单价.
15、(8分)关于x的方程x2+(2k+1)x+k2﹣1=0有两个不相等的实数根.
(1)求实数k的取值范围;
(2)若k为负整数,求此时方程的根.
16、(8分)已知,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴的正半轴、y轴的正半轴上,且OA、OC()的长是方程的两个根.
(1)如图,求点A的坐标;
(2)如图,将矩形OABC沿某条直线折叠,使点A与点C重合,折痕交CB于点D,交OA于点E.求直线DE的解析式;
(3)在(2)的条件下,点P在直线DE上,在直线AC上是否存在点Q,使以点A、B、P、Q为顶点的四边形是平行四边形.若存在,请求出点Q坐标;若不存在,请说明理由.
17、(10分)如图,平行四边形中,,,、分别是、上的点,且,连接交于.
(1)求证:;
(2)若,延长交的延长线于,当,求的长.
18、(10分)如图,在中,点、分别是、的中点,平分,交于点,交于点.
(1)求证:四边形是菱形;
(2)若,,求四边形的周长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。
20、(4分)与最简二次根式3是同类二次根式,则a=_____.
21、(4分)若一次函数的图象不经过第一象限,则的取值范围为_______.
22、(4分)分解因式2x3y﹣8x2y+8xy=_____.
23、(4分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=(k≠0)的图象于点B,以AB为边作平行四边形ABCD,点C,点D在x轴上.若S▱ABCD=5,则k=____.
二、解答题(本大题共3个小题,共30分)
24、(8分)一个三角形的三边长分别为5,,.
(1)求它的周长(要求结果化简);
(2)请你给出一个适当的x值,使它的周长为整数,并求出此时三角形周长的值.
25、(10分) 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.
(1)求y与x的函数关系式;
(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.
26、(12分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.
(1)求这个一次函数的关系式;
(2)在如图所示的平面直角坐标系中作出函数的图像;
(3)由图像观察,当0≤x≤2时,函数y的取值范围.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
解:根据垂线段最短,可知AP的长不可小于3
∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=1,
∴AP的长不能大于1.
∴
故选D.
2、D
【解析】
把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.
【详解】
添加A、,无法得到AD∥BC或CD=BA,故错误;
添加B、,无法得到CD∥BA或,故错误;
添加C、,无法得到,故错误;
添加D、
∵,,,
∴,,∴,
∵,∴,
∴四边形是平行四边形.
故选D.
本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
3、C
【解析】
分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选C.
点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
4、C
【解析】
两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.
【详解】
解:∵直线y=3x+6与直线y=2x+4的交点坐标为(a,b),
∴解为 的方程组是,即 .
故选:C.
本题考查了一次函数与二元一次方程组的关系:任何一条直线y=kx+b都可以转化为kx+b﹣y=0(k,b为常数,k≠0)的形式,两条直线的交点坐标即为这两条直线的解析式组成的方程组的解.
5、D
【解析】
试题解析:当3和5都是直角边时,第三边长为:=;
当5是斜边长时,第三边长为:=1.
故选D.
6、A
【解析】
由反比例函数的性质可知S△AOE=S△BOF=k1,S△COE=S△DOF=﹣k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1﹣k2的值.
【详解】
解:连接OA、OC、OD、OB,如图:
由反比例函数的性质可知S△AOE=S△BOF=|k1|=k1,S△COE=S△DOF=|k2|=﹣k2,
∵S△AOC=S△AOE+S△COE,
∴AC•OE=×4OE=2OE=(k1﹣k2)…①,
∵S△BOD=S△DOF+S△BOF,
∴BD•OF=×(EF﹣OE)=×2(6﹣OE)=6﹣OE=(k1﹣k2)…②,
由①②两式解得OE=2,
则k1﹣k2=1.
故选:A.
本题考查反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.
7、D
【解析】
根据概率公式计算即可得到答案.
【详解】
∵盒子里有形状、大小完全相同的黄球2个、红球3个、白球4个,
∴共有球2+3+4=9个,
∴任意摸出1个红球的概率==,
故选:D.
此题考查简单事件的概率计算公式,正确掌握概率计算公式是解题的关键.
8、A
【解析】
根据“600元单独购买甲种图书比单独购买乙种图书少10本”列出相应的分式方程,本题得以解决.
【详解】
由题意可得,
,
故选:A.
本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
10、
【解析】
首先根据二次根式有意义的条件和分式有意义的条件列出不等式,求出x的值,然后可得y的值,易求结果.
【详解】
解:由题意得:,
∴x=-2,
∴y=3,
∴,
故答案为:.
本题考查了二次根式和分式的性质,根据他们各自的性质求出x,y的值是解题关键.
11、1
【解析】
利用直角三角形30度角的性质,可得AC=2AD=1.
【详解】
解:在矩形ABCD中,OC=OD,
∴∠OCD=∠ODC,
∵∠AOD=60°,
∴∠OCD=∠AOD=×60°=30°,
又∵∠ADC=90°,
∴AC=2AD=2×2=1.
故答案为1.
本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键
12、二
【解析】
根据各象限内点的坐标特征,可得答案.
【详解】
解:由点A(x,y)在第三象限,得
x<0,y<0,
∴x<0,-y>0,
点B(x,-y)在第二象限,
故答案为:二.
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
13、
【解析】
直接根据关于轴对称的点纵坐标不变横坐标互为相反数进行解答即可.
【详解】
解:关于轴对称的点纵坐标不变,横坐标互为相反数,
直线与直线关于轴对称,则直线的解析式为.
故答案为:.
本题考查的是一次函数的图象与几何变换,熟知关于轴对称的点的坐标特点是解答此题的关键.
三、解答题(本大题共5个小题,共48分)
14、纪念笔和记事本的单价分别为1元,6元.
【解析】
首先设纪念笔单价为x元,则记事本单价为(x-4)元,根据题意可得等量关系:30元买记事本的数量与用50元买纪念笔的数量相同,由等量关系可得方程,进而解答即可.
【详解】
解:设纪念笔单价为x元,则记事本的单价为(x-4)元.
由题意,得:.
解得:x=1.
经检验x=1是原方程的解,且符合题意.
∴纪念笔的单价为1元,
∴记事本的单价:1-4=6(元).
答:纪念笔和记事本的单价分别为1元,6元.
此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
15、(1) ;(2)x1=0,x2=1.
【解析】
(1)由方程有两个不相等的实数根知△>0,据此列出关于k的不等式,解之可得;
(2)由所得k的范围,结合k为负整数得出k的值,代入方程,再利用因式分解法求解可得.
【详解】
(1)由题意,得△.
解得.
(2)∵k为负整数,
∴.
则方程为.
解得,.
本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=4k+5>0;(2)将k=-1代入原方程,利用因式分解法解方程.
16、(1)(1,0);(2);(3)存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形.
【解析】
(1)通过解一元二次方程可求出OA的长,结合点A在x轴正半轴可得出点A的坐标;
(2)连接CE,设OE=m,则AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,进而可得出点E的坐标,同理可得出点D的坐标,根据点D,E的坐标,利用待定系数法可求出直线DE的解析式;
(3)根据点A,C的坐标,利用待定系数法可求出直线AC的解析式,设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2),分AB为边和AB为对角线两种情况考虑:①当AB为边时,利用平行四边形的性质可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论;②当AB为对角线时,利用平行四边形的对角线互相平分,可得出关于a,c的二元一次方程组,解之可得出c值,再将其代入点Q的坐标中即可得出结论.综上,此题得解.
【详解】
(1)解方程x2-12x+32=0,得:x1=2,x2=1.
∵OA、OC的长是方程x2-12x+32=0的两个根,且OA>OC,点A在x轴正半轴上,
∴点A的坐标为(1,0).
(2)连接CE,如图2所示.
由(1)可得:点C的坐标为(0,2),点B的坐标为(1,2).
设OE=m,则AE=CE=1-m.
在Rt△OCE中,∠COE=90°,OC=2,OE=m,
∴CE2=OC2+OE2,即(1-m)2=22+m2,
解得:m=3,
∴OE=3,
∴点E的坐标为(3,0).
同理,可求出BD=3,
∴点D的坐标为(5,2).
设直线DE解析式为:
∴
∴直线DE解析式为:
(3)∵点A的坐标为(1,0),点C的坐标为(0,2),点B的坐标为(1,2),
∴直线AC的解析式为y=-x+2,AB=2.
设点P的坐标为(a,2a-6),点Q的坐标为(c,-c+2).
分两种情况考虑,如图5所示:
①当AB为边时, ,
解得:c1=,c2=,
∴点Q1的坐标为(,),点Q2的坐标为(,);
②当AB为对角线时,,
解得: ,
∴点Q3的坐标为(,- ).
综上,存在点或或,使以点A、B、P、Q为顶点的四边形是平行四边形
本题考查了解一元二次方程、矩形的性质、勾股定理、折叠的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)通过解一元二次方程,找出点A的坐标;(2)利用勾股定理,求出点D,E的坐标;(3)分AB为边和AB为对角线两种情况,利用平行四边形的性质求出点Q的坐标.
17、(1)详见解析;(2)3
【解析】
(1)由平行四边形的性质和AAS证明△OBE≌△ODF,得出对应边相等即可;
(2)证出AE=GE,再证明DG=DO,得出OF=FG=1,即可得出结果.
【详解】
解:(1)证明:∵四边形是平行四边形
∴
∴
在与中,
∵
∴
∴
(2)∵
∴
∵
∴
∴
∵
∴
∴
∴
∴
由(1)可知,
∴
∴.
本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键.
18、(1)见解析;(2)8.
【解析】
(1)由三角形中位线定理可得BC=2DE,DE∥BC,且FG∥AB,可证四边形BDFG是平行四边形,由角平分线的性质和平行线的性质可得DF=DB,即可得四边形BDFG是菱形;
(2)由菱形的性质可得DF=BG=GF=BD,由BC=2DE,可求BG的长,即可求四边形BDFG的周长.
【详解】
证明:(1)∵点D、E分别是AB、AC的中点,
∴BC=2DE,DE∥BC,且FG∥AB,
∴四边形BDFG是平行四边形,
∵BF平分∠ABC,
∴∠DBF=∠GBF,
∵DE∥BC,
∴∠GBF=∠DFB,
∴∠DFB=∠DBF,
∴DF=DB,
∴四边形BDFG是菱形;
(2)∵四边形BDFG是菱形;
∴DF=BG=GF=BD
∵BC=2DE
∴BG+4=2(BG+1)
∴BG=2,
∴四边形BDFG的周长=4×2=8
本题考查了菱形的性质和判定,三角形中位线定理,熟练运用菱形的性质是本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、8或4
【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.
【详解】
解:∵AD=9,AE:ED=1:2,
∴AE=3,ED=6,
又∵EF=2>AB,分情况讨论:
如下图:
当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,
CF=GD=ED+GE,在RT三角形GFE中,GE==2,
则此时CF=6+2=8;
如下图:
当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,
则此时CF=6-2=4;
综上,CF的长为8或4.
本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.
20、3
【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于的方程,解出即可.
【详解】
解:∵
与最简二次根式是同类二次根式
∴,解得:
故答案为:
本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于的方程是解题的关键.
21、k≤-2.
【解析】
根据一次函数与系数的关系得到,然后解不等式组即可.
【详解】
∵一次函数y=kx+k+2的图象不经过第一象限,
∴
∴k≤-2.
故答案为:k≤-2.
本题考查了一次函数与系数的关系:对于一次函数y=kx+b(k≠0),k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.
22、2xy(x﹣2)2
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=2xy(x2﹣4x+4)=2xy(x﹣2)2,
故答案为:2xy(x﹣2)2
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
23、-1
【解析】
设点A(x,),表示点B的坐标,然后求出AB的长,再根据平行四边形的面积公式列式计算即可得解.
【详解】
设点A(x,),则B(,),
∴AB=x-,
则(x-)•=5,
k=-1.
故答案为:-1.
本题考查了反比例函数系数的几何意义,用点A,B的横坐标之差表示出AB的长度是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)见解析.
【解析】
(1)周长;
(2)当x=20时,周长=(或当x=时,周长=等).
(答案不唯一,符合题意即可)
25、(1)y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)当购买数量x=35时,W总费用最低,W最低=16元.
【解析】
(1)根据函数图象找出点的坐标,结合点的坐标利用待定系数法求出函数解析式即可;
(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.
【详解】
(1)当0≤x<20时,设y与x的函数关系式为:y=mx,把(20,160)代入y=mx,得160=mx,
解得m=8,
故当0≤x<20时,y与x的函数关系式为:y=8x;
当x≥20时,设y与x的函数关系式为:y=kx+b, 把(20,160),(40,288)代入y=kx+b得:
解得:
∴y=6.4x+1.
∴y与x的函数关系式为y=8x(0≤x<20)或y=6.4x+1(x≥20);
(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,
∴,
∴22.5≤x≤35,
设总费用为W元,则W=6.4x+1+7(45﹣x)=﹣0.6x+347,
∵k=﹣0.6,
∴y随x的增大而减小,
∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=16(元).
本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.
26、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.
【解析】
(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;
(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.
(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.
【详解】
解:(1)设函数的关系式为y=kx+b,
则由题意,得 解得,
∴一次函数的关系式为y=5x-4;
(2)所作图形如图.
(3)∵0≤x≤2,
∴y的取值范围是:-4≤y≤1.
故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.
本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.
题号
一
二
三
四
五
总分
得分
批阅人
2024年河北省唐山市林西中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】: 这是一份2024年河北省唐山市林西中学数学九年级第一学期开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省阳江二中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年广东省阳江二中学数学九上开学质量跟踪监视模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年广东省深圳市育才第二中学数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年广东省深圳市育才第二中学数学九上开学质量跟踪监视试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。