![2025届安徽省五河县联考数学九年级第一学期开学预测试题【含答案】01](http://img-preview.51jiaoxi.com/2/3/16222323/0-1728202232777/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届安徽省五河县联考数学九年级第一学期开学预测试题【含答案】02](http://img-preview.51jiaoxi.com/2/3/16222323/0-1728202232858/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2025届安徽省五河县联考数学九年级第一学期开学预测试题【含答案】03](http://img-preview.51jiaoxi.com/2/3/16222323/0-1728202232878/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2025届安徽省五河县联考数学九年级第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列说法正确的是( )
A.两个全等三角形是特殊的位似图形B.两个相似三角形一定是位似图形
C.位似图形的面积比与周长比都和相似比相等D.位似图形不可能存在两个位似中心
2、(4分)如图,函数与,在同一坐标系中的大致图像是()
A.B.
C.D.
3、(4分)如图,,点D在AB的垂直平分线上,点E在AC的垂直平分线上,则的度数是( ).
A.15°B.20°C.25°D.30°
4、(4分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是
A.B.C.D.
5、(4分)使根式有意义的的范围是( ).
A.x≥0B.x≥4C.x≥-4D.x≤-4
6、(4分)一次函数,当时,x的取值范围是
A.B.C.D.
7、(4分)下列命题是真命题的是( )
A.如果a2=b2,那么a=b
B.如果两个角是同位角,那么这两个角相等
C.相等的两个角是对项角
D.在同一平面内,垂直于同一条直线的两条直线平行
8、(4分)如图,点O在ABC内,且到三边的距离相等,若∠A=60°,则∠BOC的大小为( )
A.135°B.120°C.90°D.60°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图显示了小亚用计算机模拟随机投掷一枚某品牌啤酒瓶盖的实验结果.
那么可以推断出如果小亚实际投掷一枚品牌啤酒瓶盖时,“凸面向上”的可能性 _________“凹面向上”的可能性.(填“大于”,“等于”或“小于”).
10、(4分)反比例函数与一次函数图象的交于点,则______.
11、(4分)如图,将矩形沿对角线折叠,使点翻折到点处,如果,那么______.
12、(4分)如图,在梯形中, ,对角线,且,则梯形的中位线的长为_________.
13、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
(1)填空:△ABC≌△ ;AC和BD的位置关系是
(2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
(3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
15、(8分)已知一次函数的图象经过点,且与正比例函数的图象相交于点
(1)求a的值;
(2)求出一次函数的解析式;
(3)求的面积.
16、(8分)如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G;
(1)求证:△ABE∽△EGB;
(2)若AB=4,求CG的长.
17、(10分)阅读下列材料:
小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.
小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积他把这种解决问题的方法称为构图法.
请回答:
(1)①图1中△ABC的面积为________;
②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.
(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2、的格点△DEF.
18、(10分)如图,为线段上一动点,分别过点作,,连接.已知,设.
(1)用含的代数式表示的值;
(2)探究:当点满足什么条件时,的值最小?最小值是多少?
(3)根据(2)中的结论,请构造图形求代数式的最小值.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)一次函数图象过点日与直线平行,则一次函数解析式__________.
20、(4分)已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.
21、(4分)工人师傅在做门窗或矩形零件时,不仅要测量两组对边的长度是否相等,常常还要测量它们的两条对角线是否相等,以确保图形是矩形.这依据的道理是:_______________________________.
22、(4分)计算__________.
23、(4分)已知一次函数与图象如图所示,则下列结论:①;②;③关于的方程的解为;④当,.其中正确的有_______(填序号).
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,已知过点B(1,0)的直线与直线:相交于点P(-1,a).且l1与y轴相交于C点,l2与x轴相交于A点.
(1)求直线的解析式;
(2)求四边形的面积;
(3)若点Q是x轴上一动点,连接PQ、CQ,当△QPC周长最小时,求点Q坐标.
25、(10分)已知,如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD的四个顶点,求图中阴影部分的面积.
26、(12分)如图 ,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_ .
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据位似图形的定义与性质对各个选项进行判断即可.
【详解】
A.全等三角形是特殊的相似三角形,其相似比为1,但是两个全等三角形不一定对应顶点的连线相交于一点,对应边互相平行,故本选项错误,
B.两个位似三角形的对应顶点的连线一定相交于一点,对应边一定互相平行,而相似三角形只要求形状相同、大小不等,并没有位置上的特殊要求,故本选项错误,
C.位似图形的面积的比等于相似比的平方,周长的比等于相似比,故本选项错误,
D.两个位似图形不仅是相似图形,而且对应顶点的连线相交于一点,这一点是唯一的, 故本选项正确.
故选D.
本题主要考查位似图形的定义与性质,1.位似图形对应线段的比等于相似比;2.位似图形的对应角都相等;3.位似图形对应点连线的交点是位似中心;4.位似图形面积的比等于相似比的平方;5.位似图形高、周长的比都等于相似比;6.位似图形对应边互相平行或在同一直线上.
2、B
【解析】
分成a>0和a<0两种情况进行讨论,根据一次函数与反比例函数的图象的性质即可作出判断.
【详解】
解:当a>0时,一次函数单增,过一三四象限,没有选项满足.
当a<0时,一次函数单减,过二三四象限,反比例函数过二四象限,B满足.
故答案选B.
本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.
3、B
【解析】
根据线段的垂直平分线的性质得到DB=DA,EC=EA,根据等腰三角形的性质解答即可.
【详解】
解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,
∴DB=DA,EC=EA,
∵∠BAC=100°,
∴∠B+∠C=80°,
∵DB=DA,EC=EA,
∴∠DAB=∠B,∠EAC=∠C,
∴∠DAB+∠EAC=80°,
∴∠DAE=100°-80°=20°,故选B.
本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
4、A
【解析】
甲队每天修路xm,则乙队每天修(x-10)m,因为甲、乙两队所用的天数相同,
所以,.
故选A.
5、C
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
使根式有意义,则4+x≥0,
解得:x≥-4,
故x的范围是:x≥-4,
故选C.
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
6、D
【解析】
根据一次函数,可得:,解得:,即可求解.
【详解】
因为,
所以当时,则,
解得,
故选D.
本题主要考查一次函数与不等式的关系,解决本题的关键是要熟练掌握一次函数与不等式的关系.
7、D
【解析】
利用平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系分别判断后即可确定正确的选项.
【详解】
A、如果a2=b2,那么a=±b,故错误,是假命题;
B、两直线平行,同位角才相等,故错误,是假命题;
C、相等的两个角不一定是对项角,故错误,是假命题;
D、平面内,垂直于同一条直线的两条直线平行,正确,是真命题,
故选D.
本题考查了命题与定理的知识,解题的关键是了解平方的定义、平行线的性质、对顶角的性质及平面内两直线的位置关系等知识,难度不大.
8、B
【解析】
由条件可知O为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=(∠ABC+∠ACB)=(180°-∠A),在△BOC中利用三角形的内角和定理可求得∠BOC.
【详解】
∵O到三边的距离相等
∴BO平分∠ABC,CO平分∠ACB
∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°−∠A)
∵∠A=60°
∴∠OBC+∠OCB=60°
∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°
故选B.
本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、小于
【解析】
根据图形中的数据即可解答本题.
【详解】
解:根据表中数据可得,“凸面向上”的频率在0.443与0.440之间,
∴凸面向上”的可能性 小于“凹面向上”的可能性.,
故答案为:小于.
本题考查模拟实验,可能性的大小,解答本题的关键是明确概率的定义,利用数形结合的思想解答.
10、-1
【解析】
试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.
考点:待定系数法求反比例函数解析式
11、
【解析】
根据折叠的性质及相似三角形的判定与性质及勾股定理即可求解.
【详解】
∵将矩形沿对角线折叠,使点翻折到点处,
∴∠BCA=∠ECA,AE=AB=CD,EC=BC=AD,
∵矩形ABCD的对边AD∥BC,
∴∠DAC=∠BCA,
∴∠ECA=∠DAC,
设AD与CE相交于F,则AF=CF,
∴AD-AF=CE-CF,即DF=EF,
∴
又∠AFC=∠DFE,
∴△ACF∽△DEF,
∴
设DF=x,则AF=FC=3x,
在Rt△CDF中,CD=
又BC=AD=AF+DF=4x,
∴
此题主要考查相似三角形与矩形的应用,解题的关键是熟知勾股定理、矩形的性质及相似三角形的判定与性质.
12、1
【解析】
解:过C作CE∥BD交AB的延长线于E,
∵AB∥CD,CE∥BD,
∴四边形DBEC是平行四边形,
∴CE=BD,BE=CD
∵等腰梯形ABCD中,AC=BD∴CE=AC
∵AC⊥BD,CE∥BD,
∴CE⊥AC
∴△ACE是等腰直角三角形,
∵AC=,
∴AE =AC=10,
∴AB+CD =AB+BE=10,
∴梯形的中位线=AE=1,
故答案为:1.
本题考查了梯形的中位线定理,牢记定理是解答本题的重点,难点是题目中的辅助线的做法.
13、
【解析】
延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
【详解】
延长AB至M,使BM=AE,连接FM,
∵四边形ABCD是菱形,∠ADC=120°
∴AB=AD,∠A=60°,
∵BM=AE,
∴AD=ME,
∵△DEF为等边三角形,
∴∠DAE=∠DFE=60°,DE=EF=FD,
∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
∴∠MEF=∠ADE,
∴△DAE≌EMF(SAS),
∴AE=MF,∠M=∠A=60°,
又∵BM=AE,
∴△BMF是等边三角形,
∴BF=AE,
∵AE=t,CF=2t,
∴BC=CF+BF=2t+t=3t,
∵BC=4,
∴3t=4,
∴t=
考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
三、解答题(本大题共5个小题,共48分)
14、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
【解析】
(1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
(2)根据四条边都相等的四边形是菱形证明;
(3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
【详解】
(1)由图可知,AB=AD,CB=CD,
在△ABC和△ADC中,
,
∴△ABC≌△ADC(SSS),
∵AB=AD,
∴点A在BD的垂直平分线上,
∵CB=CD,
∴点C在BD的垂直平分线上,
∴AC垂直平分BD,
∴AC⊥BD;
(2)四边形ABCD是菱形.
理由如下:由(1)可得AB=AD,CB=CD,
∵AB=BC,
∴AB=BC=CD=DA,
∴四边形ABCD是菱形;
(3)设点B到AD的距离为h,
在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
在Rt△ADO中,AD==5,
S菱形ABCD=AC•BD=AD•h,
即×8×6=5h,
解得h=,
设拼成的正方形的边长为a,则a2=×8×6,
解得a=2cm.
所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
15、(1)1(2)(3)
【解析】
(1)将点B代入正比例函数即可求出a的值;
(2)将点A、B代入一次函数,用待定系数法确定k,b的值即可;
(3)可将分割成两个三角形求其面积和即可.
【详解】
(1)依题意,点在正比例函数的图象上,
所以,
(2)依题意,点A、B在一次函数图象上,
所以,,解得:,.
一次函数的解析式为:,
(3)直线AB与y轴交点为,
的面积为:
本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.
16、 (1)证明见解析;(2)CG=6.
【解析】
(1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
(2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
【详解】
(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
∴∠A=∠BEG,
∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
∴∠ABE=∠G,
∴△ABE∽△EGB;
(2)∵AB=AD=4,E为AD的中点,
∴AE=DE=2,
在Rt△ABE中,BE=,
由(1)知,△ABE∽△EGB,
∴,即:,
∴BG=10,
∴CG=BG﹣BC=10﹣4=6.
本题主要考查了四边形与相似三角形的综合运用,熟练掌握二者相关概念是解题关键
17、(1)① ,②见解析; (2)见解析.
【解析】
分析:
(1)①如图3,由S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF结合已知条件即可求得△ABC的面积了;②如图4,对照图形过点O作OM∥AB,且使OM=AB,作ON∥AB,且使ON=AB,则根据过直线为一点有且只有一条直线平行于已知直线可知点O、M、N在同一直线上,由此所得线段MN=2AB;
(2)如图5,按照题中构图法结合勾股定理画出△DEF即可.
详解:
(1)① 如图3,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF=;
②如图所示,线段MN即为所求:
(2)如图5所示,△DEF即为所求.
点睛:(1)“构造如图3所示的正方形DECF,由此得到,S△ABC=S正方形DECF-S△ABD-S△BCE-S△ACF”是解答第1小题的关键;(2“由勾股定理在6×6网格中找到使DE=,EF=,DF=的点D、E、F的位置”是解答第2小题的关键.
18、(1);(2)三点共线时;(3)2
【解析】
试题分析:(1)由于△ABC和△CDE都是直角三角形,故可由勾股定理表示;
(2)若点C不在AE的连线上,根据三角形中任意两边之和大于第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小;
(3)由(1)(2)的结果可作BD=1,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.
(1);
(2)当三点共线时,的值最小.
(3)如下图所示,作,过点作,过点作,使,.连结交于点,的长即为代数式的最小值.
过点作交的延长线于点,得矩形,
则,1.
所以,即的最小值为2.
考点:本题考查的是轴对称-最短路线问题
点评:本题利用了数形结合的思想,求形如的式子的最小值,可通过构造直角三角形,利用勾股定理求解.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
设一次函数解析式为y=kx+b,先把(0,-1)代入得b=-1,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.
【详解】
解:设一次函数解析式为y=kx+b,
把(0,-1)代入得b=-1,
∵直线y=kx+b与直线y=1-3x平行,
∴k=-3,
∴一次函数解析式为y=-3x-1.
故答案为:y=-3x-1.
本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.
20、50
【解析】
根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.
【详解】
解:在Rt△ABC中,AB2=AC2+BC2,AB=5,
S阴影=S△AHC+S△BFC+S△AEB=
=50
故答案为:50.
本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.
21、对角线相等的平行四边形是矩形.
【解析】
根据已知条件和矩形的判定定理(对角线相等的平行四边形为矩形)解答即可.
【详解】
解:∵门窗所构成的形状是矩形,
∴根据矩形的判定(对角线相等的平行四边形为矩形)可得出.
故答案为:对角线相等的平行四边形是矩形.
本题主要考查矩形的判定定理:对角线相等的平行四边形为矩形,熟练掌握矩形的判定定理是解题的关键.
22、
【解析】
将化成最简二次根式,再合并同类二次根式.
【详解】
解:
故答案为:
本题考查了二次根式的运算,运用二次根式的乘除法法则进行二次根式的化简是解题的关键.
23、③④
【解析】
根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x>3时,一次函数y1=kx+b在直线y2=x+a的下方,则可对④进行判断.
【详解】
解:∵一次函数y1=kx+b经过第一、二、四象限,
∴k<0,b>0,所以①错误;
∵直线y2=x+a的图象与y轴的交点在x轴,下方,
∴a<0,所以②错误;
∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,
∴x=3时,kx+b=x﹣a,所以③正确;
当x>3时,y1<y2,所以④正确.
故答案为③④.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
二、解答题(本大题共3个小题,共30分)
24、(1)y=-x+1;(2);(3)点Q坐标为(-,0)时△QPC周长最小
【解析】
(1)根据点P在直线l2上,求出P的坐标,然后用待定系数法即可得出结论;
(2)根据计算即可;
(3)作点C关于x轴对称点C',直线C’P与x轴的交点即为所求的点Q,求出点Q的坐标即可.
【详解】
(1)∵点P(-1,a)在直线l2:y=2x+4上,∴,即,则P的坐标为(-1,2),设直线的解析式为:,那么,解得:,∴的解析式为:.
(2)∵直线与y轴相交于点C,∴C的坐标为(0,1).
又∵直线与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而,∴.
(3)作点C关于x轴对称点C′,易求直线C′P:y=-3x-1.当y=0时,x=,∴点Q坐标为(,0)时,△QPC周长最小.
本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.
25、1
【解析】
过E作MN⊥BC,交BC于M,交AD于N,得出△EBC的面积+△EAD的面积=AD•EN+BC•EM=BC•MN=平行四边形ABCD的面积,即可得出阴影部分的面积.
【详解】
解:过E作MN⊥BC,交BC于M,交AD于N,如图所示:
∵四边形ABCD是平行四边形,∴AD∥BC,∴EN⊥AD,
∵S△AED=AD•EN,S△BCE=BC•EM,∴S△ADE+S△BCE=AD•EN+C•EM=BC•MN=平行四边形ABCD的面积=×6=1,∴阴影部分的面积=1.
本题主要考查了平行四边形的性质、阴影部分面积的计算;关键是掌握平行四边形的面积公式=底×高.
26、(1)证明见解析;(2)矩形
【解析】
(1)根据矩形的性质求出OA=OD,证出四边形AODE是平行四边形即可;
(2)根据菱形的性质求出∠AOD=90°,再证出四边形AODE是平行四边形即可.
【详解】
解:(1)∵矩形ABCD,
∴OA=OC=AC,OD=OB=BD,AC=BD,
∴OA=OD,
∵DE∥CA,AE∥BD,
∴四边形AODE是平行四边形,
∴四边形AODE是菱形.
(2)∵DE∥CA,AE∥BD,
∴四边形AODE是平行四边形,
∵菱形ABCD,
∴AC⊥BD,
∴∠AOD=90°,
∴平行四边形AODE是矩形.
故答案为:矩形.
本题主要考查对菱形的性质和判定,矩形的性质和判定,平行四边形的判定等知识点的理解和掌握,能推出四边形是平行四边形和证正出∠AOD=90°、OA=OD是解此题的关键.
题号
一
二
三
四
五
总分
得分
2025届安徽省来安县联考数学九年级第一学期开学达标检测模拟试题【含答案】: 这是一份2025届安徽省来安县联考数学九年级第一学期开学达标检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省铜陵市义安区九年级数学第一学期开学预测试题【含答案】: 这是一份2024年安徽省铜陵市义安区九年级数学第一学期开学预测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省六区联考九年级数学第一学期开学调研模拟试题【含答案】: 这是一份2024年安徽省六区联考九年级数学第一学期开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。