2024年安徽省铜陵市义安区九年级数学第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)平南县某小区5月份随机抽取了15户家庭,对其用电情况进行了统计,统计情况如下(单位:度):78,62,95,108,87,103,99,74,87,105,88,76,76,94,79.则用电量在71~80的家庭有( )
A.4户B.5户C.6户D.7户
2、(4分)已知等腰三角形的一个角为72度,则其顶角为( )
A.B.
C.D.或
3、(4分)不等式x≤-1的解集在数轴上表示正确的是()
A.B.
C.D.
4、(4分)样本方差的计算公式中,数字30和20分别表示样本的( )
A.众数、中位数B.方差、标准差C.数据的个数、中位数D.数据的个数、平均数
5、(4分)在长度为1的线段上找到两个黄金分割点P,Q,则PQ=( )
A.B.C.D.
6、(4分)下面计算正确的是( )
A.B.C.D.(a>0)
7、(4分)小颖现已存款200元,为赞助“希望工程”,她计划今后每月存款10元,则存款总金额y(元)与时间x(月)之间的函数关系式是( )
A.y=10xB.y=120xC.y=200-10xD.y=200+10x
8、(4分)六边形的内角和为( )
A.360°B.540°C.720°D.900°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形的三边长分别为、、,若,,则__________.
10、(4分)已知一个直角三角形的斜边长为6cm,那么这个直角三角形斜边上的中线长为________cm.
11、(4分)计算:3-2= ;
12、(4分)如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.
13、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.
三、解答题(本大题共5个小题,共48分)
14、(12分)某校餐厅计划购买12张餐桌和一批餐椅,现从甲、乙两商场了解到:同一型号的餐桌报价每张均为200元,餐椅报价每把均为50元.甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.那么,学校应如何购买更优惠?
15、(8分)如图,菱形中,为对角线的延长线上一点.
(1)求证:;
(2)若,,,求的长.
16、(8分)已知:如图,是的中线,是线段的中点,.
求证:四边形是等腰梯形.
17、(10分)某开发公司生产的960件新产品,需要精加工后,才能投放市场.现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比乙工厂单独加工完这批产品多用20天,而乙工厂每天比甲工厂多加工8件产品,公司需付甲工厂加工费用每天80元,乙工厂加工费用每天120元.
(1)求甲、乙两个工厂每天各能加工多少件新产品.
(2)公司制定产品加工方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中,公司需派一名工程师每天到厂进行技术指导,并负担每天5元的误餐补助费. 请你帮助公司选择一种既省时又省钱的加工方案,并说明理由.
18、(10分)分解因式:
(1). (2).
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图:使△AOB∽△COD,则还需添加一个条件是: .(写一个即可)
20、(4分)命题“对顶角相等”的逆命题的题设是___________.
21、(4分)已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;
22、(4分)如图,把矩形ABCD沿EF翻转,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是
23、(4分)在平行四边形ABCD中,∠B+∠D=190°,则∠A=_____°.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是( )
①OG=AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.
A.1个B.2个C.3个D.4个
25、(10分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.
(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?
(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?
26、(12分)已知是的函数,自变量的取值范围为,下表是与的几组对应值
小明根据学习函数的经验,利用上述表格所反映出的与之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系中,指出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象.
(2)根据画出的函数图象填空.
①该函数图象与轴的交点坐标为_____.
②直接写出该函数的一条性质.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据题意找出用电量在71~80的家庭即可.
【详解】
解:用电量在71~80的家庭有:78,74,76,76,79共5户.
故选:B.
本题主要考查了数据的收集与整理,理清题意是解题的关键.
2、D
【解析】
分两种情况讨论:72度为顶角或为底角,依次计算即可.
【详解】
分两种情况:
①72度为顶角时,答案是72°;
②72度为底角时,则顶角度数为180°-72×2=36°.
故选D.
本题主要考查了等腰三角形的性质,已知提供的度数并没有说明其为底角还是顶角,所以需要分类讨论解决.
3、B
【解析】
根据数轴的表示方法表示即可.(注意等于的时候是实心的原点.)
【详解】
根据题意不等式x≤-1的解集是在-1的左边部分,包括-1.
故选B.
本题主要考查实数的数轴表示,注意有等号时应用实心原点表示.
4、D
【解析】
【分析】方差公式中,n、 分别表示数据的个数、平均数.
【详解】样本方差的计算公式中,数字30和20分别表示样本的数据的个数、平均数.
故选:D
【点睛】本题考核知识点:方差.解题关键点:理解方差公式的意义.
5、C
【解析】
【分析】先根据黄金分割的定义得出较长的线段AP=BQ=AB,再根据PQ=AP+BQ-AB,即可得出结果.
【详解】:根据黄金分割点的概念,可知AP=BQ=,
则PQ=AP+BQ-AB=
故选:C
【点睛】此题主要是考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(
)叫做黄金比.熟记黄金分割分成的两条线段和原线段之间的关系,能够熟练求解.
6、B
【解析】
分析:根据合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质与化简逐项计算分析即可.
详解:A. ∵4与不是同类二次根式,不能合并,故错误;
B. ∵ ,故正确;
C. ,故错误;
D. (a>0),故错误;
故选B.
点睛:本题考查了二次根式的有关运算,熟练掌握合并同类二次根式、二次根式的除法、二次根式的乘法、二次根式的性质是解答本题的关键.
7、D
【解析】
根据题意可以写出存款总金额y(元)与时间x(月)之间的函数关系式,从而可以解答本题.
【详解】
解:由题意可得,
y=200+10x,
故选:D.
本题考查函数关系式,解答本题的关键是明确题意,写出函数关系式.
8、C
【解析】
根据多边形内角和公式(n-2) ×180 º计算即可.
【详解】
根据多边形的内角和可得:
(6﹣2)×180°=720°.
故选C.
本题考查了多边形内角和的计算,熟记多边形内角和公式是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或5
【解析】
根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.
【详解】
解:①若b是斜边长
根据勾股定理可得:
②若c是斜边长
根据勾股定理可得:
综上所述:或5
故答案为:或5
此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
10、1
【解析】
根据直角三角形斜边上的中线等于斜边的一半可求得答案.
【详解】
解:
∵直角三角形斜边长为6cm,
∴斜边上的中线长= ,
故答案为:1.
本题主要考查直角三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.
11、
【解析】
根据负整数指数为正整数指数的倒数计算.
解:3-2=.故答案为.
12、1.2.
【解析】
根据实物与影子的比相等可得小芳的影长.
【详解】
∵爸爸身高1.8m,小芳比他爸爸矮0.3m,
∴小芳高1.5m,
设小芳的影长为xm,
∴1.5:x=1.8:2.1,
解得x=1.2,
小芳的影长为1.2m.
本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.
13、144(1﹣x)2=1.
【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.
【详解】
设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,
根据题意,得144(1﹣x)2=1.
故答案为144(1﹣x)2=1.
本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、当购买的餐椅大于等于9少于32把时,到甲商场购买更优惠.
【解析】
试题分析:设学校购买12张餐桌和把餐椅,到购买甲商场的费用为元,到乙商场购买的费用为元,根据“甲商场称:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售”即可列不等式求解.
解:设学校购买12张餐桌和把餐椅,到购买甲商场的费用为元,到乙商场购买的费用为元,则有
当,即时,
答:当学校购买的餐椅少于32把时,到甲商场购买更优惠。
考点:一元一次不等式的应用
点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.
15、(1)见解析;(2)
【解析】
(1)根据菱形的性质,证明即可解答
(2)作于,利用勾股定理得出,作于,设,,根据勾股定理得出,,把数值代入即可
【详解】
(1)证明:∵四边形是菱形,为对角线
∴
在和中,
∵,∠ABE=∠CBE,
∴
∴
(2)作于,∴,
∵,∴,∴,
∴,
∴,
∵,∴,
∴,
作于,设,
∴ ∴
∵
∴
∴ ∴
∴
此题考查菱形的性质,全等三角形的判定与性质,勾股定理,三角形内角和,解题关键在于作辅助线
16、见解析.
【解析】
先证明△ADE≌△MDC得出AE=MC,证出AE=MB,得出四边形AEBM是平行四边形,证出BE=AC,而AE∥BC,BE与AC不平行,即可得出结论.
【详解】
证明:∵
∴.
∵,
∴.
∴.
∵,
∴.
∴四边形是平行四边形.
∴.
而,
∴.
∵,与不平行,
∴四边形是梯形.
∴梯形是等腰梯形.
本题考查了等腰梯形的判定、平行四边形的判定、全等三角形的判定与性质;熟练掌握等腰梯形的判定,证明三角形全等是解题的关键.
17、 (1)甲、乙两个工厂每天各能加工16和24件.(2)合作.
【解析】
解:(1)设甲工厂每天能加工件产品,
则乙工厂每天能加工件产品,根据题意,得
18、(1);(2)
【解析】
(1)首先提取公因式2,进而利用完全平方公式分解因式即可.
(2)先用平方差公式分解,再化简即可.
【详解】
解:(1)原式;
(2)原式
.
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键,注意分解要彻底.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、∠A=∠C(答案不唯一).
【解析】
添加条件是∠A=∠C,根据相似三角形的判定(有两角对应相等的两三角形相似)证明即可.
【详解】
添加的条件是:∠A=∠C,
理由是:∵∠A=∠C,∠DOC=∠BOA,
∴△AOB∽△COD,
故答案为:∠A=∠C.本题答案不唯一.
20、两个角相等
【解析】
交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.
【详解】
解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,
题设是:两个角相等
故答案为:两个角相等.
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
21、四
【解析】
直接利用各象限内点的坐标特点得出点的位置.
【详解】
,
,
点的位置在第四象限.
故答案为:四.
此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.
22、.
【解析】
试题分析:
【分析】如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°="60°." ∴∠ABE=30°.
∴在Rt△ABE中,AB= 2.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积=AB•AD=2×8=16.
故选D.
考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.
23、1
【解析】
利用平行四边形的对角相等、邻角互补可求得答案.
【详解】
解:因为四边形ABCD是平行四边形,
所以∠B=∠D,∠A+∠B=180°.
因为∠B+∠D=190°,
所以∠B=95°.
所以∠A=180°﹣95°=1°.
故答案为1.
此题考查平行四边形的性质,解题关键在于掌握其性质定理
二、解答题(本大题共3个小题,共30分)
24、B
【解析】
由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;
先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,④正确;
由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;
证出OG是△ABD的中位线,得出OG∥AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;③不正确;即可得出结果.
【详解】
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AB∥CD,OA=OC,OB=OD,AC⊥BD,
∴∠BAG=∠EDG,△ABO≌△BCO≌△CDO≌△AOD,
∵CD=DE,
∴AB=DE,
在△ABG和△DEG中,
,
∴△ABG≌△DEG(AAS),
∴AG=DG,
∴OG是△ACD的中位线,
∴OG=CD=AB,①正确;
∵AB∥CE,AB=DE,
∴四边形ABDE是平行四边形,
∵∠BCD=∠BAD=60°,
∴△ABD、△BCD是等边三角形,
∴AB=BD=AD,∠ODC=60°,
∴OD=AG,四边形ABDE是菱形,④正确;
∴AD⊥BE,
由菱形的性质得:△ABG≌△BDG≌△DEG,
在△ABG和△DCO中,
,
∴△ABG≌△DCO(SAS),
∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,②不正确;
∵OB=OD,AG=DG,
∴OG是△ABD的中位线,
∴OG∥AB,OG=AB,
∴△GOD∽△ABD,△ABF∽△OGF,
∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,
∴△AFG的面积=△OGF的面积的2倍,
又∵△GOD的面积=△AOG的面积=△BOG的面积,
∴S四边形ODGF=S△ABF;③不正确;
正确的是①④.
故选B.
本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.
25、(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台.
【解析】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可.
【详解】
(1)设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得:
,
解得:x=1200,
经检验得:x=1200是原方程的解,
则x+300=1500,
答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.
(2)设甲种空气净化器为y台,乙种净化器为(30﹣y)台,根据题意得:
1200y+1500(30﹣y)≤42000,
y≥10,
答:至少进货甲种空气净化器10台.
本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.
26、 (1)见解析;(2)①(5,0);②见解析.
【解析】
(1)根据坐标,连接点即可得出函数图像;
(2)①根据图像,当x≥3时,根据两点坐标可得出函数解析式,进而可得出与轴的交点坐标;
②根据函数图像,相应的自变量的取值范围,可得出其性质.
【详解】
(1) 如图:
(2)①(5,0)
根据图像,当x≥3时,函数图像为一次函数,
设函数解析式为,将(3,4)和(4,2)两点代入,即得
解得
即函数解析式为
与x轴的交点坐标为(5,0);
②答案不唯一.如下几种答案供参考:
当0≤x≤3时,函数值y随x值增大而增大;
当x≥3时,函数值y随x值增大而减小;
当x=3时,函数有最大值为4;
该函数没有最小值.
此题主要考查利用函数图像获取信息,进行求解,熟练运用,即可解题.
题号
一
二
三
四
五
总分
得分
0
1
2
3
3.5
4
4.5
…
1
2
3
4
3
2
1
…
2024年安徽省铜陵义安区六校联考九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年安徽省铜陵义安区六校联考九年级数学第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
[数学][期末]安徽省铜陵市义安区2023~2024学年七年级下学期期末试题(有答案): 这是一份[数学][期末]安徽省铜陵市义安区2023~2024学年七年级下学期期末试题(有答案),共8页。
安徽省铜陵市义安区2023-2024学年数学八年级第一学期期末监测模拟试题含答案: 这是一份安徽省铜陵市义安区2023-2024学年数学八年级第一学期期末监测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,下列表情中,是轴对称图形的是,如果将分式等内容,欢迎下载使用。