2025届安徽省合肥市45中学九年级数学第一学期开学调研试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知△ABC的三个角是∠A,∠B,∠C ,它们所对的边分别是a,b,c.①c2-a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2 ,c=.上述四个条件中,能判定△ABC 为直角三角形的有( )
A.1个B.2个
C.3个D.4个
2、(4分)顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )
①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.
A.①③B.②③C.③④D.②④
3、(4分)下列各命题都成立,其中逆命题也成立的是( )
A.若 a>0,b>0,则 a+b>0 B.对顶角相等
C.全等三角形的对应角相等 D.平行四边形的两组对边分别相等
4、(4分)一同学将方程化成了的形式,则m、n的值应为( )
A.m=1.n=7B.m=﹣1,n=7C.m=﹣1,n=1D.m=1,n=﹣7
5、(4分)如图的图形中只能用其中一部分平移可以得到的是( )
A.B.
C.D.
6、(4分)若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是( )
A.5B.4C.3D.1
7、(4分)用反证法证明“”,应假设( )
A.B.C.D.
8、(4分)下列二次根式中,化简后不能与进行合并的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)计算:________.
10、(4分)若关于x的不等式组的解集为﹣<x<﹣6,则m的值是_____.
11、(4分)已知点A在反比例函数y=(k≠0)的图象上,过点A作AM⊥x轴于点M,△AMO的面积为3,则k=_____.
12、(4分)一个多边形的每一个内角都等于它相邻外角的2倍,则这个多边形的边数是__________.
13、(4分)如图,矩形纸片中,已知,,点在边上,沿折叠纸片,使点落在点处,连结,当为直角三角形时,的长为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a= ,b= ;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
15、(8分)一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
(1)该水果店主购进第一批这种水果的单价是多少元?
(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
16、(8分)化简或解方程
(1) ;
(2)
17、(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(−4,5),(−1,3).
(1)请在如图所示的网格平面内作出平面直角坐标系;
(2)请作出△ABC关于y轴对称的△DEF,其中点A对应点D,点B对应点E,点C对应点F;
(3)写出点E关于原点的对称点M的坐标.
18、(10分)如图,在等腰中,,D为底边BC延长线上任意一点,过点D作,与AC延长线交于点E.
则的形状是______;
若在AC上截取,连接FB、FD,判断FB、FD的数量关系,并给出证明.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若二次根式有意义,则实数m的取值范围是_________.
20、(4分)某校举行“纪念香港回归21周年”演讲比赛,共有15名同学进入决赛(决赛成绩互不相同),比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”“中位数”或“众数”)
21、(4分)如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=___________度.
22、(4分)已知,则比较大小2_____3(填“<“或“>”)
23、(4分)如图,已知矩形ABCD中,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=______
二、解答题(本大题共3个小题,共30分)
24、(8分)已知y与x-1成正比例,且当x=3时,y=4.
(1)写出y与x之间的函数表达式;
(2)当x= -2时,求y的值;
(3)当y=0时,求x的值
25、(10分)平衡车越来越受到中学生的喜爱,某公司今年从厂家以3000元/辆的批发价购进某品牌平衡车300辆进行销售,零售价格为4200元/辆,暑期将至,公司决定拿出一部分该品牌平衡车以4000元/辆的价格进行促销.设全部售出获得的总利润为y元,今年暑假期间拿出促销的该品牌平衡车数量为x辆,根据上述信息,解答下列问题:
(1)求y与x之间的函数解析式(也称关系式),并直接写出x的取值范围;
(2)若以促销价进行销售的数量不低于零售价销售数量的 ,该公司应拿出多少辆该品牌平衡车促销才能使这批车的销售利润最大?并求出最大利润.
26、(12分)已知四边形为菱形,,,的两边分别与射线、相交于点、,且.
(1)如图1,当点是线段的中点时,请直接写出线段与之间的数量关系;
(2)如图2,当点是线段上的任意一点(点不与点、重合)时,求证:;
(3)如图3,当点在线段的延长线上,且时,求线段的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据勾股定理逆定理、三角形的内角和逐一进行判断即可得.
【详解】
①由c2-a2=b2,可得c2=a2+b2,故可判断三角形ABC是直角三角形;
②∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,
∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,
∴△ABC是直角三角形;
③∵c=a=b,∴a=b,
∴a2+b2=2a2=c2,∴△ABC是直角三角形;
④∵a=2,b=2 ,c=,
∴a2+b2=12≠c2,
∴△ABC不是直角三角形,
故选C.
本题考查了直角三角形的判定,主要涉及勾股定理的逆定理、三角形的内角和等,熟练掌握勾股定理的逆定理是解题的关键.
2、D
【解析】
有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.
【详解】
如图点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是矩形.
∴∠FEH=90°,EF∥BD∥HG,FG∥AC∥EH,EF≠GH.
∴AC⊥BD.
①平行四边形的对角线不一定互相垂直,故①错误;
②菱形的对角线互相垂直,故②正确;
③矩形的对角线不一定互相垂直,故③错误;
④对角线互相垂直的四边形,故④正确.
综上所述,正确的结论是:②④.
故选D.
此题主要考查矩形的性质及三角形中位线定理的综合运用.
3、D
【解析】
分别找到各选项的逆命题进行判断即可.
【详解】
A.的逆命题为若a+b>0,则a>0,b>0,明显错误,没有考虑b为负数且绝对值小于a的情况,
B. 的逆命题为相等的角都是对顶角,明显错误,
C. 的逆命题为对应角相等的三角形为全等三角形,这是相似三角形的判定方法,故错误,
D. 的逆命题为两组对边分别相等的四边形是平行四边形,这是平行四边形的判定,正确.
故选D.
本题考查了真假命题的判定,属于简单题,找到各命题的逆命题是解题关键.
4、B
【解析】
先把(x+m)1=n展开,化为一元二次方程的一般形式,再分别使其与方程x1-4x-3=0的一次项系数、二次项系数及常数项分别相等即可.
【详解】
解:∵(x+m)1=n可化为:x1+1mx+m1-n=0,
∴,解得:
故选:B.
此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可.
5、B
【解析】
根据平移的性质,对选项进行一一分析,排除错误答案 .
【详解】
、图形为轴对称所得到,不属于平移;
、图形的形状和大小没有变化,符合平移性质,是平移;
、图形为旋转所得到,不属于平移;
、最后一个图形形状不同,不属于平移 .
故选.
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错 .
6、D
【解析】
试题分析:∵点(3,1)在一次函数y=kx-2(k≠0)的图象上,∴3k-2=1,解得k=1.
故选D.
考点:一次函数图象上点的坐标特征.
7、D
【解析】
根据命题:“a>0”的反面是:“a≤0”,可得假设内容.
【详解】
解:由于命题:“a>0”的反面是:“a≤0”,
故用反证法证明:“a>0”,应假设“a≤0”,
故选:D.
此题主要考查了反证法的步骤,熟记反证法的步骤:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
8、C
【解析】
首先根据题意,只要含有同类项即可合并,然后逐一进行化简,得出A、B、D选项都含有同类项,而C选项不含同类项,故选C.
【详解】
解:根据题意,只要含有同类项即可合并,
A中=,可以与进行合并;
B中=,可以与进行合并;
C中=,与无同类项,不能合并;
D中=,可以与进行合并.
故选C.
此题主要考查二次根式的化简与合并.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2
【解析】
分别先计算绝对值,算术平方根,零次幂后计算得结果.
【详解】
解:原式.
故答案为:.
本题考查的是绝对值,算术平方根,零次幂的运算,掌握运算法则是解题关键.
10、1
【解析】
先解不等式组得出其解集为,结合可得关于的方程,解之可得答案.
【详解】
解不等式,得:,
解不等式,得:,
∵不等式组的解集为,
∴,
解得,
故答案为:1.
本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
11、±1.
【解析】
过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【详解】
解:因为△AOM的面积是3,
所以|k|=2×3=1.
所以k=±1.
故答案为:±1.
主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,这里体现了数形结合的思想,正确理解k的几何意义是关键.
12、1
【解析】
设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.
【详解】
设外角为x,则相邻的内角为2x,
由题意得,2x+x=180°,
解得,x=10°,
310÷10°=1,
故答案为:1.
本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.
13、3或
【解析】
分两种情况:①当∠EFC=90°,先判断出点F在对角线AC上,利用勾股定理求出AC,设BE=x,表示出CE,根据翻折变换的性质得到AF=AB,EF=BE,再根据Rt△CEF利用勾股定理列式求解;②当∠CEF=90°,判断四边形ABEF是正方形,根据正方形的性质即可求解.
【详解】
分两种情况:①当∠EFC=90°,如图1,
∵∠AFE=∠B=90°,∠EFC=90°,
∴点A、F、C共线,
∵矩形ABCD的边AD=4,
∴BC=AD=4,
在Rt△ABC中,AC=
设BE=x,则CE=BC-BE=4-x,
由翻折的性质得AF=AB=3,EF=BE=x,∴CF=AC-AF=5-3=2
在Rt△CEF中,EF2+CF2=CE2,
即x2+22=(4-x)2,
解得x=;
②当∠CEF=90°,如图2
由翻折的性质可知∠AEB=∠AEF=45°,
∴四边形ABEF是正方形,
∴BE=AB=3,
故BE的长为3或
此题主要考查矩形的折叠问题,解题的关键是根据图形进行分类讨论.
三、解答题(本大题共5个小题,共48分)
14、(1)25;0.10;(2)补图见解析;(3)200人.
【解析】
(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;
(2)补全条形统计图即可;
(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.
【详解】
解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;
故答案为25;0.10;
(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:
(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.
此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.
15、(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是1.
【解析】
(1)根据题意可以列出相应的分式方程,从而可以解答本题,注意分式方程要检验;
(2)根据题意可以得到关于a的不等式,从而可以求得a的最大值.
【详解】
(1)设第一批水果的单价是x元,
,
解得,x=20,
经检验,x=20是原分式方程的解,
答:水果店主购进第一批这种水果的单价是20元;
(2)由题意可得,
,
解得,a≤1,
答:a的最大值是1.
本题考查分式方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式,利用分式方程和不等式的性质解答.
16、(1)21;(2)x1=,x2=−1.
【解析】
(1)首先化为最简二次根式,然后根据二次根式的乘法法则进行计算;
(2)利用因式分解法解方程即可.
【详解】
解:(1)原式;
(2),
,
∴或,
解得:x1=,x2=−1.
此题考查了解一元二次方程和二次根式的乘法运算,熟练掌握运算法则是解本题的关键.
17、(1)见解析;(2)见解析;(3)(−2,−1).
【解析】
(1)根据题意画出坐标系即可;
(2)根据关于y轴对称的点的坐标特点作出△DEF即可;
(3)根据中心对称的特点直接写出答案即可.
【详解】
(1)(2)如图:
(3)根据图象得到点E的坐标为(2,1),其关于原点对称的点的坐标为(−2,−1).
此题考查作图-轴对称变换,解题关键在于掌握作图法则.
18、(1)等腰三角形;.
【解析】
根据等腰三角形的性质得到,求得,根据全等三角形的性质得到,于是得到结论;
根据平行线的性质得到,根据全等三角形的性质即可得到结论
【详解】
是等腰三角形,
理由:,
,
,
,
,
,
是等腰三角形;
故答案为:等腰三角形;
,
理由:,
,
,
,,
即,
在与中,
≌,
.
本题考查了等腰三角形的判定和性质,全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、m≤3
【解析】
由二次根式的定义可得被开方数是非负数,即可得答案.
【详解】
解:由题意得:解得: ,故答案为:.
本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.
20、中位数
【解析】
试题分析:中位数表示的是这15名同学中成绩处于第八名的成绩,如果成绩是中位数以前,则肯定获奖,如果成绩是中位数以后,则肯定没有获奖.
考点:中位数的作用
21、1
【解析】
分别求出正方形ABCD的内角∠ABC和正六边形BEFGHC的内角∠CBE的度数,进一步即可求出答案.
【详解】
解:∵四边形ABCD是正方形,
∴∠ABC=90°,
∵六边形BEFGHC是正六边形,
∴∠CBE=,
∴∠ABE=360°-(∠ABC+∠CBE)=360°-(90°+120°)=1°.
故答案为:1.
本题主要考查了正多边形的内角问题,属于基础题型,熟练掌握多边形的内角和公式是解题的关键.
22、<
【解析】
要使两个分式的和为零,则必须两个分式都为0,进而计算a,b的值,代入比较大小即可.
【详解】
解:∵ +=0,
∴a﹣3=0,2﹣b=0,
解得a=3,b=2,
∴2 , ,
∴ .
故答案为:<
本题主要考查根式为零时参数的计算,这是考试的重点知识,应当熟练掌握.
23、4.8.
【解析】
矩形各内角为直角,在直角△ABD中,已知AB、AD,根据勾股定理即可求BD的值,根据面积法即可计算AE的长.
【详解】
矩形各内角为直角,∴△ABD为直角三角形
在直角△ABD中,AB=6,AD=8
则BD= =10,
∵△ABD的面积S=AB⋅AD=BD⋅AE,
∴AE= =4.8.
故答案为4.8.
此题考查矩形的性质,解题关键在于运用勾股定理进行计算
二、解答题(本大题共3个小题,共30分)
24、 (1) ;(2)-6;(3)1
【解析】
(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;
(2)利用(1)中关系式求出x=-2时对应的函数值y即可.
(3)利用(1)中关系式求出y=0时对应的自变量x即可.
【详解】
解:(1)由题意可设,因为当时,
所以,,解得,
故与之间的函数表达式为
(2)因为,所以当时,
(3)因为,所以当时,即,解得
题考查了待定系数法求一次函数解析式.注意本题中是“y与x-1成正比例”,而不是“y与x成正比例”.
25、(1)y=﹣200x+360000(0≤x≤300);(2)公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
【解析】
(1)根据“利润=售价-成本”结合“总利润=促销部分的利润+正常零售的利润”列式进行计算即可得;
(2)根据以促销价进行销售的数量不低于零售价销售数量的列出关于x的不等式,然后求出x的取值范围,继而根据一次函数的性质进行求解即可.
【详解】
(1)根据题意得:
y=(4000﹣3000)x+(4200﹣3000)(300﹣x)=﹣200x+360000(0≤x≤300);
(2)根据题意得:x≥(300-x),
解得x≥60,
由(1)可知,y=﹣200x+360000,
∵﹣200<0,
∴y随x的增大而减小,
∴x=60时,y的值增大,最大值为:﹣200×60+360000=348000(元),
答:公司应拿出60辆该品牌平衡车促销才能使这批车的销售利润最大,最大利润为348000元.
本题考查了一次函数的应用,弄清题意,找准各量间的数量关系是解题的关键.
26、(1);(2)见解析;(3).
【解析】
(1)连接AC,先证△ABC是等边三角形,再由题意得出AE⊥BC,∠B=60°求解可得;
(2)证△BAE≌△CAF即可得;
(3)作AG⊥BC,由∠EAB=15°,∠ABC=60°知∠AEB=45°,根据AG=2得EG=AG=2,EB=EG-BG=2-2,再证△AEB≌△AFC知EB=FC,由FD=FC+CD=EB+CD可得答案.
【详解】
解:(1)如图1,连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等边三角形,
∵E是BC中点,
∴AE⊥BC,BE=BC=AB
在Rt△ABE中,AE=BEtanB=BE;
(2)证明:连接,如图2中,
∵四边形是菱形,,
∴与都是等边三角形,
∴,.
∵,
∴,
在和中,
,
∴.
∴.
(3)解:连接,过点作于点,如图3所示,
∵,,
∴.
在中,
∵,,
∴,
∴.
在中,
∵,,
∴,
∴.
由(2)得,,
则,
∵,
∴,
可得,
∴,
∴.
考查四边形的综合问题,解题的关键是掌握菱形的性质、等边三角形与全等三角形的判定与性质等知识点.
题号
一
二
三
四
五
总分
得分
课外阅读时间(单位:小时)
频数(人数)
频率
0<t≤2
2
0.04
2<t≤4
3
0.06
4<t≤6
15
0.30
6<t≤8
a
0.50
t>8
5
b
2025届安徽合肥市中学国科技大附属中学数学九年级第一学期开学调研模拟试题【含答案】: 这是一份2025届安徽合肥市中学国科技大附属中学数学九年级第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年级安徽省淮北市西园中学九年级数学第一学期开学调研试题【含答案】: 这是一份2024年级安徽省淮北市西园中学九年级数学第一学期开学调研试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省合肥市中学国科技大附中数学九年级第一学期开学复习检测模拟试题【含答案】: 这是一份2024年安徽省合肥市中学国科技大附中数学九年级第一学期开学复习检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。