


还剩17页未读,
继续阅读
2024年浙江省台州市玉环市数学九年级第一学期开学达标检测试题【含答案】
展开这是一份2024年浙江省台州市玉环市数学九年级第一学期开学达标检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在矩形中,是的中点,,垂足为,则用的代数式表示的长为()
A.B.C.D.
2、(4分)如果三条线段a、b、c满足a2=(c+b)(c﹣b),那么这三条线段组成的三角形是( )
A.直角三角形B.锐角三角形C.钝角三角形D.不能确定
3、(4分)在函数y=中,自变量x的取值范围是( )
A.x≥-3且x≠0B.x<3
C.x≥3D.x≤3
4、(4分)在1000个数据中,用适当的方法抽取50个作为样本进行统计,频数分布表中54.5~57.5这一组的频数是6,那么它的频率为( )
A.0.12B.0.60C.6D.12
5、(4分)下列根式中,不是最简二次根式的是( )
A.B.C.D.
6、(4分)直线=与直线y2=2x在同一平面直角坐标系中的图象如图所示,则不等式y1≤y2的解集为( )
A.x≤﹣1B.x≥﹣1C.x≤﹣2D.x≥﹣2
7、(4分)等腰三角形的底角是70°,则顶角为( )
A.B.C.D.
8、(4分)将分式中的,的值同时扩大为原来的2019倍,则变化后分式的值( )
A.扩大为原来的2019倍B.缩小为原来的
C.保持不变D.以上都不正确
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是______.
10、(4分)如图,菱形ABCD中, E为边AD上一点,△ABE沿着BE折叠,点A的对应点F恰好落在边CD上,则___.
11、(4分)一元二次方程有实数根,则的取值范围为____.
12、(4分)方程x4﹣16=0的根是_____.
13、(4分)分解因式:__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算: (1); (2).
15、(8分)菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:
(1)求点D的坐标;
(2)若反比例函数y=(k≠0)的图象经过点H,则k= ;
(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
16、(8分)中国新版高铁“复兴号”率先在北京南站和上海虹桥站双向首发“复兴号”高铁从某车站出发,在行驶过程中速度(千米/分钟)与时间(分钟)的函数关系如图所示.
(1)当时,求关于工的函数表达式,
(2)求点的坐标.
(3)求高铁在时间段行驶的路程.
17、(10分)某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定,现从两家提供的样品中各抽取了6件进行检查,超过标准质量部分记为正数,不足部分记为负数,若该皮具的标准质量为500克,测得它们质量如下(单位:g)
(1)分别计算甲、乙两厂抽样检测的皮具总质量各是多少克?
(2)通过计算,你认为哪一家生产皮具的质量比较稳定?
18、(10分)已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)与最简二次根式3是同类二次根式,则a=_____.
20、(4分)如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.
21、(4分)已知函数,当时,函数值为______.
22、(4分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R应控制的范围是____.
23、(4分)若为三角形三边,化简___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)根据已知条件画出图形;
(2)求证:四边形AFCE是平行四边形.
25、(10分)(1)化简;(m+2+)•
(2)先化简,再求值;(+x+2)÷,其中|x|=2
26、(12分)先化简,再求值,从-1、1、2中选择一个你喜欢的且使原式有意义的的值代入求值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
如图连接DH,根据面积和相等列方程求解.
【详解】
解:如图所示连接DH,AB=m,BC=4,BH=2,
则矩形面积=4m, AH=,
则矩形ABCD=三角形ABH+三角形AHD+三角形DHC,
则4m=m+DE×+m,
解得DE=.
本题考查勾股定理和矩形性质,能够做出辅助线是解题关键.
2、A
【解析】
∵a2=(c+b)(cb),
∴a2=c2﹣b2,即a2+b2=c2,
∴这三条线段组成的三角形是直角三角形.
故选A.
本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
3、D
【解析】
根据二次根式有意义的条件解答即可.
【详解】
由题意得3-x≥0,
解得:x≤3,
故选D.
本题考查二次根式有意义的条件,要使二次根式有意义必须满足被开方数大于等于0,熟练掌握二次根式有意义的条件是解题关键.
4、A
【解析】
根据频率=频数÷样本总数解答即可.
【详解】
用样本估计总体:在频数分布表中,54.5~57.5这一组的频数是6,
那么估计总体数据落在54.5~57.5这一组的频率=0.12,
故选A.
本题主要考查频率分布表、频率的意义与计算方法,频率的意义,每组的频率=小组的频数:样本容量.同时考查统计的基本思想即用样本估计总体的应用.
5、C
【解析】
根据最简二次根式的概念即可求出答案.
【详解】
C.原式=2,故C不是最简二次根式,
故选:C.
此题考查最简二次根式,解题关键在于掌握其概念.
6、B
【解析】
直接根据两函数图象的交点坐标即可得出结论.
【详解】
∵由函数图象可知,当x≥-1时,直线y1=在直线y2=2x的下方,
∴不等式y1≤y2的解集为x≥-1.
故选:B.
本题考查的是一次函数与一元一次不等式,能利用函数图象直接得出不等式的解集是解答此题的关键.
7、A
【解析】
根据等腰三角形的性质可得另一底角的度数,再根据三角形内角和定理即可求得顶角的度数.
【详解】
解:∵等腰三角形的底角是70°,
∴其顶角=180°-70°-70°=40°,
故选:A.
此题主要考查等腰三角形的性质及三角形内角和定理,熟练掌握等腰三角形的性质是解题的关键.
8、C
【解析】
将分式中的x,y的值同时扩大为原来的2019倍,则x、2x-4y的值都扩大为原来的2019倍,所以根据分式的基本性质可得,变化后分式的值保持不变.
【详解】
解:∵将分式中的x,y的值同时扩大为原来的2019倍,
则,
∴变化后分式的值保持不变.
故选:C.
此题主要考查了分式的基本性质,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据正方形的性质求出AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M,连接AC、CF,求出AM=4,FM=2,∠AMF=90°,根据正方形性质求出∠ACF=90°,根据直角三角形斜边上的中线性质求出CHAF.在Rt△AMF中,根据勾股定理求出AF即可.
【详解】
∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,∴AB=BC=1,CE=EF=3,∠E=90°,延长AD交EF于M.连接AC、CF,则AM=BC+CE=1+3=4,FM=EF﹣AB=3﹣1=2,∠AMF=90°.
∵四边形ABCD和四边形GCEF是正方形,∴∠ACD=∠GCF=45°,∴∠ACF=90°.
∵H为AF的中点,∴CHAF.在Rt△AMF中,由勾股定理得:AF,∴CH.
故答案为.
本题考查了勾股定理,正方形的性质,直角三角形斜边上的中线的应用,解答此题的关键是能正确作出辅助线,并求出AF的长和得出CHAF,有一定的难度.
10、35°
【解析】
由菱形的性质可得AB∥CD,AB=BC,∠A=∠C=70°,由平行线的性质可得∠BFC=∠ABF,由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF,等角代换可得∠ABF的度数,进而即可求解.
【详解】
∵四边形ABCD是菱形,
∴AB∥CD,AB=BC,∠A=∠C=70°
∴∠BFC=∠ABF
由翻折的性质可得:BF=AB,∠ABE=∠EBF=∠ABF
∴BC=BF
∴∠BFC=∠ABF=∠C=70°
∴∠ABE=∠ABF=35°
故答案为:35°.
本题主要考查菱形的性质和翻折的性质,解题的关键是利用菱形的性质和翻折的性质求出∠ABF的度数.
11、
【解析】
根据根的判别式求解即可.
【详解】
∵一元二次方程有实数根
∴
解得
故答案为:.
本题考查了一元二次方程根的问题,掌握根的判别式是解题的关键.
12、±1
【解析】
根据平方根的定义,很容易求解,或者把方程左边因式分解,通过降次的方法也可以求解.
【详解】
∵x4﹣16=0,
∴(x1+4)(x+1)(x﹣1)=0,
∴x=±1,
∴方程x4﹣16=0的根是x=±1,
故答案为±1.
该题为高次方程,因此解决该题的关键,是需要把方程左边因式分解,从而达到降次的目的,把高次方程转化为低次方程,从而求解.
13、
【解析】
先提取a,再根据平方差公式即可因式分解.
【详解】
故填:.
此题主要考查因式分解,解题的关键是熟知公式法与提取公因式法因式分解.
三、解答题(本大题共5个小题,共48分)
14、(1)6;(2)
【解析】
分析:(1)根据二次根式的乘法进行计算即可;(2)首先化简各式进而合并同类项求出即可.
详解:(1)(1)原式;
(2)(π+1)0-+||=1-2+ =1-;
点睛:本题考查了二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.
15、(1)(﹣,3)(2) (3)(,)或(﹣,5)或(,﹣)
【解析】
(1)由线段DE,CD的长是方程x2﹣9x+18=0的两根,且CD>DE,可求出CD、DE的长,由四边形ABCD是菱形,利用菱形的性质可求得D点的坐标.
(2)由(1)可得OB、CM,可得B、C坐标,进而求得H点坐标,由反比例函数y=(k≠0)的图象经过点H,可求的k的值;
(3)分别以CF为平行四边形的一边或者为对角线的情形进行讨论即可.
【详解】
(1)x2﹣9x+18=0,
(x﹣3)(x﹣6)=0,
x=3或6,
∵CD>DE,
∴CD=6,DE=3,
∵四边形ABCD是菱形,
∴AC⊥BD,AE=EC==3,
∴∠DCA=30°,∠EDC=60°,
Rt△DEM中,∠DEM=30°,
∴DM=DE=,
∵OM⊥AB,
∴S菱形ABCD=AC•BD=CD•OM,
∴=6OM,OM=3,
∴D(﹣,3);
(2)∵OB=DM=,CM=6﹣=,
∴B(,0),C(,3),
∵H是BC的中点,
∴H(3,),
∴k=3×=;
故答案为;
(3)
①∵DC=BC,∠DCB=60°,
∴△DCB是等边三角形,
∵H是BC的中点,
∴DH⊥BC,
∴当Q与B重合时,如图1,四边形CFQP是平行四边形,
∵FC=FB,
∴∠FCB=∠FBC=30°,
∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,
∴AB⊥BF,CP⊥AB,
Rt△ABF中,∠FAB=30°,AB=6,
∴FB=2=CP,
∴P(,);
②
如图2,∵四边形QPFC是平行四边形,
∴CQ∥PH,
由①知:PH⊥BC,
∴CQ⊥BC,
Rt△QBC中,BC=6,∠QBC=60°,
∴∠BQC=30°,
∴CQ=6,
连接QA,
∵AE=EC,QE⊥AC,
∴QA=QC=6,
∴∠QAC=∠QCA=60°,∠CAB=30°,
∴∠QAB=90°,
∴Q(﹣,6),
由①知:F(,2),
由F到C的平移规律可得P到Q的平移规律,则P(﹣﹣3,6﹣),即P(﹣,5);
③
如图3,四边形CQFP是平行四边形,
同理知:Q(﹣,6),F(,2),C(,3),
∴P(,﹣);
综上所述,点P的坐标为:(,)或(﹣,5)或(,﹣).
本题主要考查平行四边形、菱形的图像和性质,反比例函数的图像与性质等,综合性较大,需综合运用所学知识充分利用已知条件求解.
16、(1);(2)点的坐标为;(3)高铁在时段共行驶了千米.
【解析】
(1)根据函数图象中的数据可以求得OA段对应的函数解析式;
(2)根据函数图象中的数据可以求得AC段对应的函数解析式,然后将x=15代入,求得相应的y值,即可得到点C的坐标;
(3)根据(2)点C的坐标和图象中的数据可以求得高铁在CD时段共行驶了多少千米.
【详解】
(1)当时,
设关于的函数表达式是,
,得,
即当,关于的函数表达式是.
(2)设段对应的函数解析式为,
得
即段对应的函数表达式为.
当时,,
即点的坐标为.
(3)(千米),
答:高铁在时段共行驶了千米.
考查了一次函数的应用,正确读取图象的信息并用待定系数求解析式是解题的关键.
17、 (1)甲厂抽样检测的皮具总质量为3000克,乙厂抽样检测的皮具总质量为3000克;(2)乙公司生产皮具的质量比较稳定.
【解析】
(1)求出记录的质量总和,再加上标准质量即可;
(2)以标准质量为基准,根据方差的定义求出两公司的方差,相比即可.
【详解】
解:(1)甲厂抽样检测的皮具总质量为500×6+(﹣3+0+0+1+2+0)=3000(克),
乙厂抽样检测的皮具总质量为500×6+(﹣2+1﹣1+0+1+1)=3000(克);
(2)∵=×(﹣3+0+0+1+2+0)=0,
∴=×[(﹣3﹣0)2+(0﹣0)2×3+(1﹣0)2+(2﹣0)2]≈2.33,
∵=×(﹣2+1﹣1+0+1+1)=0,
∴=×[(﹣2﹣0)2+3×(1﹣0)2+(﹣1﹣0)2+(0﹣0)2]≈1.33,
∵<,
∴乙公司生产皮具的质量比较稳定.
本题主要考查了方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.
18、36
【解析】
连接AC,根据勾股定理可求AC,再利用勾股定理逆定理可判定△ACD为直接三角形,进而可求答案.
【详解】
解:连结AC,在Rt△ABC中
∵
在△ADC中
∵,
∴
∴△ADC是直角三角形, ∠ACD=90°
本题考查的是勾股定理和勾股定理的逆定理,能够灵活运用所学知识是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于的方程,解出即可.
【详解】
解:∵
与最简二次根式是同类二次根式
∴,解得:
故答案为:
本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于的方程是解题的关键.
20、1
【解析】
过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.
【详解】
解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.
∵AD//BC,DE∥AB,
∴四边形ABED是平行四边形,
∴AB=DE,
∴CD=DE,
∵DF⊥BC,
∴EF=CF,
∵BC-AD=2DF,
∴CF=DF,
∴△CDF是等腰直角三角形,
∴∠C=1°.
故答案为:1.
此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.
21、5
【解析】
根据x的值确定函数解析式代入求y值.
【详解】
解:因为>0,所以
故答案为5
本题考查了函数表达式,正确选择相应自变量范围内的函数表达式是解题的关键.
22、R≥3.1
【解析】
解:设电流I与电阻R的函数关系式为I=,
∵图象经过的点(9,4),
∴k=31,
∴I=,
k=31>0,在每一个象限内,I随R的增大而减小,
∴当I取得最大值10时,R取得最小值=3.1,
∴R≥3.1,
故答案为R≥3.1.
23、4
【解析】
根据三角形的三边关系得到m的取值范围,根据取值范围化简二次根式即可得到答案.
【详解】
∵2,m,4是三角形三边,
∴2
∴原式==m-2-(m-6)=4,
故答案为:4.
此题考查三角形的三边关系,绝对值的性质,化简二次根式,根据三角形的三边关系确定绝对值里的数的正负是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)根据已知条件画出图形即可;
(2)因为AF∥EC,得出∠DFA=∠DEC,∠DAF=∠DCE,因为D是AC的中点,可得DA=DC,推出△DAF≌△DCE,得到AF=CE,因为AF∥EC,即四边形AFCE是平行四边形;
【详解】
解:
(1)根据已知条件画出图形如下:
(2)证明:∵AF∥EC,
∴∠DFA=∠DEC,∠DAF=∠DCE,
∵D是AC的中点,
∴DA=DC,
∴△DAF≌△DCE,
∴AF=CE;
又∵AF∥EC,
∴四边形AFCE是平行四边形;
本题主要考查了平行四边形的判定与性质,掌握平行四边形的判定是解题的关键.
25、(1)m+1;(2)1
【解析】
(1)先对括号里面的式子进行合并,再利用完全平方公式进行计算即可解答.
(2)先合并括号里面的,再把除法变成乘法,约分合并,最后把|x|=2,代入即可.
【详解】
解:(1)原式==m+1;
(2)原式= ,
由|x|=2,得到x=2或﹣2(舍去),
当x=2时,原式=1.
此题考查分式的化简求值,解题关键在于掌握运算法则.
26、4
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式=
=x+2,
由分式有意义的条件可知:x=2,
∴原式=4,
本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
题号
一
二
三
四
五
总分
得分
批阅人
厂家
超过标准质量的部分
甲
﹣3
0
0
1
2
0
乙
﹣2
1
﹣1
0
1
1
相关试卷
2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】:
这是一份2024-2025学年浙江省台州市书生中学数学九上开学达标检测模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省台州市玉环市九年级中考一模数学试题+:
这是一份2024年浙江省台州市玉环市九年级中考一模数学试题+,文件包含扫描件_数学pdf1pdf、扫描件_数学答案pdf等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。
2023-2024学年浙江省台州市玉环市数学九年级第一学期期末质量检测试题含答案:
这是一份2023-2024学年浙江省台州市玉环市数学九年级第一学期期末质量检测试题含答案,共8页。试卷主要包含了抛物线的顶点到轴的距离为等内容,欢迎下载使用。