终身会员
搜索
    上传资料 赚现金

    2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】

    立即下载
    加入资料篮
    2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】第1页
    2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】第2页
    2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】

    展开

    这是一份2024年云南省普洱市九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面点A有一只蚂蚁,它想吃到上底面上与点A相对的点B的食物,需要爬行的最短路程是(π取3)( )
    A.10cmB.12mC.14cmD.15cm
    2、(4分)如图在▱ABCD中,已知AC=4cm,若△ACD的周长为13cm,则▱ABCD的周长为( )
    A.26cmB.24cmC.20cmD.18cm
    3、(4分)下列计算结果正确的是
    A.B.C.D.
    4、(4分)若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是( )
    A.m≠2且n=0B.m=2且n=0C.m≠2D.n=0
    5、(4分)四边形的对角线相交于点,且,那么下列条件不能判断四边形为平行四边形的是( )
    A.B.C.D.
    6、(4分)甲车行驶40km与乙车行使30km所用的时间相同,已知甲车比乙车每小时多行驶15km.设甲车的速度为xkm/h,依题意,下列所列方程正确的是( )
    A.=B.=C.=D.=
    7、(4分)某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是80%”,则对该同学的说法理解最合理的是( )
    A.小东夺冠的可能性较大B.如果小东和他的对手比赛10局,他一定会赢8局
    C.小东夺冠的可能性较小D.小东肯定会赢
    8、(4分)在平面直角坐标系中,平行四边形的顶点的坐标分别是, ,点把线段三等分,延长分别交于点,连接, 则下列结论:; ③四边形的面积为;④,其中正确的有( ).
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)已如边长为的正方形ABCD中,C(0,5),点A在x轴上,点B在反比例函数y=(x>0,m>0)的图象上,点D在反比例函数y=(x<0,n<0)的图象上,那么m+n=______.
    10、(4分)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.则第2016个正方形的边长为_____
    11、(4分)已知反比例函数的图象上两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是 _______________
    12、(4分)如图,在反比例函数的图象上有四个点,,,,它们的横坐标依次为,,,,分别过这些点作轴与轴的垂线,则图中阴影部分的面积之和为______.
    13、(4分)若点P(-2,2)是正比例函数y=kx(k≠0)图象上的点,则此正比例函数的解析式为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分).
    15、(8分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
    设这种双肩包每天的销售利润为w元.
    (1)求w与x之间的函数解析式;
    (2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
    (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
    16、(8分)甲、乙两种客车共7辆,已知甲种客车载客量是30人,乙种客车载客量是45人.其中,每辆乙种客车租金比甲种客车多100元,5辆甲种客车和2辆乙种客车租金共需2300元.
    (1)租用一辆甲种客车、一辆乙种客车各多少元?
    (2)设租用甲种客车x辆,总租车费为y元,求y与x的函数关系;在保证275名师生都有座位的前提下,求当租用甲种客车多少辆时,总租车费最少,并求出这个最少费用.
    17、(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
    (Ⅰ)图①中的值为 ;
    (Ⅱ)求统计的这组数据的平均数、众数和中位数;
    (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
    18、(10分)如图,点、、、在一条直线上,,,,交于.
    求证:与互相平分,
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,在平面直角坐标系xOy中,A,B两点分别在x轴,y轴的正半轴上,且OA=OB,点C在第一象限,OC=3,连接BC,AC,若∠BCA=90°,则BC+AC的值为_________.
    20、(4分)数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则x=________.
    21、(4分)一个班有48名学生,在期末体育考核中,优秀的人数有16人,在扇形统计图中,代表体育考核成绩优秀的扇形的圆心角是__________度.
    22、(4分)如图,在中,和分别平分和,过点作,分别交于点,若,则线段的长为_______.
    23、(4分)如图,在四边形ABCD中,AD//BC,E、F分别是AB、CD的中点,若AD=3,BC=5,则EF=____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,已知是等边三角形,点在边上,是以为边的等边三角形,过点作的平行线交线段于点,连接。
    求证:(1);
    (2)四边形是平行四边形。
    25、(10分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.
    (1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;
    (2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;
    (3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.
    26、(12分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.
    (1)求反比例函数的解析式;
    (2)求一次函数的解析式;
    (3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    要想求得最短路程,首先要把A和B展开到一个平面内.根据两点之间,线段最短求出蚂蚁爬行的最短路程.
    【详解】
    解:展开圆柱的半个侧面是矩形,
    矩形的长是圆柱的底面周长的一半,即3π≈9,矩形的宽是圆柱的高1.
    根据两点之间线段最短,
    知最短路程是矩形的对角线AB的长,即AB==15厘米.
    故选:D.
    此题考查最短路径问题,求两个不在同一平面内的两个点之间的最短距离时,一定要展开到一个平面内.根据两点之间,线段最短.确定要求的长,再运用勾股定理进行计算.
    2、D
    【解析】
    根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.
    【详解】
    解:∵AC=4cm,若△ADC的周长为13cm,
    ∴AD+DC=13﹣4=9(cm).
    又∵四边形ABCD是平行四边形,
    ∴AB=CD,AD=BC,
    ∴平行四边形的周长为2(AB+BC)=18cm.
    故选D.
    3、C
    【解析】
    根据二次根式的运算法则进行分析.
    【详解】
    A. ,不是同类二次根式,不能合并,本选项错误;
    B. ,本选项错误;
    C. ,本选项正确;
    D. ,本选项错误.
    故选C
    本题考核知识点:二次根式运算. 解题关键点:理解二次根式运算法则.
    4、A
    【解析】
    试题解析:若y关于x的函数是正比例函数,

    解得:
    故选A.
    5、C
    【解析】
    根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.
    【详解】
    解:A、加上BO=DO可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    B、加上条件AB∥CD可证明△AOB≌△COD可得BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    C、加上条件AB=CD不能证明四边形是平行四边形,故此选项符合题意;
    D、加上条件∠ADB=∠DBC可利用ASA证明△AOD≌△COB,可证明BO=DO,可利用对角线互相平分的四边形是平行四边形,故此选项不合题意;
    故选:C.
    此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.
    6、A
    【解析】
    设甲车的速度为xkm/h,则乙车的速度为(x-15)km/h,根据时间=路程÷速度结合甲车行驶40km与乙车行使30km所用的时间相同,即可得出关于x的分式方程,此题得解.
    【详解】
    设甲车的速度为xkm/h,则乙车的速度为(x﹣15)km/h,
    根据题意得:=.
    故选A.
    本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.
    7、A
    【解析】
    根据题意主要是对可能性的判断,注意可能性不是一定.
    【详解】
    根据题意可得小东夺冠的可能性为80%,B选项错误,因为不是一定赢8局,而是可能赢8局;C选项错误,因为小东夺冠的可能性大于50%,应该是可能性较大;D选项错误,因为可能性只有80%,不能肯定能赢.故选A
    本题主要考查同学们对概率的理解,概率是一件事发生的可能性,有可能发生,也有可能不发生.
    8、C
    【解析】
    ① 根据题意证明,得出对应边成比例,再根据把线段三等分,证得,即可证得结论;
    ② 延长BC交y轴于H,证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;
    ③ 利用面积差求得,根据相似三角形面积比等于相似比的平方进行计算并作出判断;
    ④ 根据勾股定理,计算出OB的长,根据三等分线段OB可得结论.
    【详解】
    作AN⊥OB于点N,BM⊥x轴于点M,如图所示:
    在平行四边形OABC中,点的坐标分别是, ,

    又∵把线段三等分,

    又∵,



    即,①结论正确;
    ∵,

    ∴平行四边形OABC不是菱形,





    故△OFD和△BEG不相似,故②错误;
    由①得,点G是AB的中点,
    ∴FG是△OAB的中位线,
    ∴,
    又∵把线段三等分,




    ∴四边形DEGH是梯形
    ∴,故③正确;
    ,故④错误;
    综上:①③正确,
    故答案为C.
    此题主要考查勾股定理、平行四边形的性质、相似三角形的判定与性质、线段的中点,熟练运用,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、±5
    【解析】
    由勾股定理可求点A坐标,分两种情况讨论,利用全等三角形的判定和性质求出B、D的坐标,即可求解.
    【详解】
    解:设点A(x,0)
    ∴AC2=OA2+OC2,
    ∴26=25+OA2,
    ∴OA=1
    ∴点A(1,0),或(-1,0)
    当点A(1,0)时,
    如图,过点B作BF⊥x轴,过点C作CE⊥y轴,与BF交于点E,过点D作DH⊥x轴,交CE于点G,
    ∵∠CBE+∠ABF=90°,且∠CBE+∠ECB=90°
    ∴∠ECB=∠ABF,且BC=AB,∠E=∠AFB=90°
    ∴△ABF≌△BCE(AAS)
    ∴BE=AF,BF=CE
    ∵OF=OA+AF
    ∴CE=OF=1+BE=BF
    ∴BF+BE=1+BE+BE=5
    ∴BE=2,
    ∴BF=3
    ∴点B坐标(3,3)
    ∴m=3×3=9,
    ∵A(1,0), C(0,5), B(3,3),
    ∴点D(1+0-3,0+5-3),即(-2,2)
    ∴n=-2×2=-4
    ∴m+n=5
    若点A(-1,0)时,
    同理可得:B(2,2),D(-3,3),
    ∴m=4,n=-9
    ∴m+n=-5
    故答案为:±5
    本题考查了反比例函数图象上点的坐标特征,正方形的性质,全等三角形的判定和性质,利用分类讨论思想解决问题和利用方程思想解决问题是本题的关键.
    10、()1.
    【解析】
    首先求出AC、AE、HE的长度,然后猜测命题中隐含的数学规律,即可解决问题.
    【详解】
    ∵四边形ABCD为正方形,
    ∴AB=BC=1,∠B=90°,
    ∴AC2=12+12,AC=;
    同理可求:AE=()2,HE=()3…,
    ∴第n个正方形的边长an=()n-1,
    ∴第2016个正方形的边长为()1,
    故答案为()1.
    本题考查了勾股定理在直角三角形中的运用,考查了学生找规律的能力,本题中找到an的规律是解题的关键.
    11、m<
    【解析】
    当x1<0<x2时,有y1<y2根据两种图象特点可知,此时k>0,所以1-2m>0,解不等式得m<1/2 .
    故答案为m<1/2 .
    12、2
    【解析】
    由题意,图中阴影部分的面积之和=×矩形AEOF的面积,根据比例系数k的几何意义即可解决问题;
    【详解】
    解:如图,∵反比例函数的解析式为,
    ∴矩形AEOF的面积为1.
    由题意,图中阴影部分的面积之和=×矩形AEOF的面积=2,
    故答案为2.
    本题考查反比例函数的几何意义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
    13、y=-x
    【解析】
    直接把点(-2,2)代入正比例函数y=kx(k≠0),求出k的数值即可.
    【详解】
    把点(-2,2)代入y=kx得
    2=-2k,
    k=-1,
    所以正比例函数解析式为y=-x.
    故答案为:y=-x.
    本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.
    三、解答题(本大题共5个小题,共48分)
    14、
    【解析】
    先分别根据平方差公式和完全平方公式进行计算,再合并即可.
    【详解】
    原式=25-10-2+4-3
    =10+4
    此题考查平方差公式和完全平方公式,掌握运算法则是解题关键
    15、(1)w=-x2+90x-1800;(2)当x=45时,w有最大值,最大值是225(3)该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元
    【解析】试题分析:(1)根据销售利润=单个利润×销售量,列出式子整理后即可得;
    (2)由(1)中的函数解析式,利用二次函数的性质即可得;
    (3)将w=200代入(1)中的函数解析式,解方程后进行讨论即可得.
    试题解析:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,
    w与x之间的函数解析式w=﹣x2+90x﹣1800;
    (2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,
    ∵﹣1<0,
    当x=45时,w有最大值,最大值是225;
    (3)当w=200时,﹣x2+90x﹣1800=200,
    解得x1=40,x2=50,
    ∵50>42,x2=50不符合题意,舍去,
    答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.
    16、(1)租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元;(2)当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    【解析】
    (1)设租用一辆甲种客车的费用为x元,则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,解方程即可;
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,又30x+45(7﹣x)≥275,求出x的最大值即可.
    【详解】
    (1)设租用一辆甲种客车的费用为x元,
    则一辆乙种客车的费用为(x+100)元,则
    5x+2(x+100)=2300,
    解得x=300,
    答:租用一辆甲种客车的费用为300元,则一辆乙种客车的费用为400元.
    (2)由题意y=300x+400(7﹣x)=﹣100x+2800,
    又30x+45(7﹣x)≥275,解得x≤,
    ∴x的最大值为2,
    ∵﹣100<0,∴x=2时,y的值最小,最小值为1.
    答:当租用甲种客车2辆时,总租车费最少,最少费用为1元.
    本题考核知识点:一次函数的应用. 解题关键点:把问题转化为解一元一次方程或不等式问题.
    17、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
    【解析】
    分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
    (Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
    (Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
    解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
    (Ⅱ)观察条形统计图,
    ∵,
    ∴这组数据的平均数是1.52.
    ∵在这组数据中,1.8出现了16次,出现的次数最多,
    ∴这组数据的众数为1.8.
    ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
    ∴这组数据的中位数为1.5.
    (Ⅲ)∵在所抽取的样本中,质量为的数量占.
    ∴由样本数据,估计这2500只鸡中,质量为的数量约占.
    有.
    ∴这2500只鸡中,质量为的约有200只.
    点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    18、详见解析
    【解析】
    连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB//DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.
    【详解】

    证明:如图,连接BD,AE,
    ∵FB=CE,
    ∴BC=EF,
    又∵AB∥ED,AC∥FD,
    ∴∠ABC=∠DEF,∠ACB=∠DFE,
    在△ABC和△DEF中,

    ∴△ABC≌△DEF(ASA),
    ∴AB=DE,
    又∵AB∥DE,
    ∴四边形ABDE是平行四边形,
    ∴AD与BE互相平分.
    本题主要考查了平行四边形的判定和性质,解决问题的关键是依据全等三角形的对应边相等得出结论.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    可将△OBC绕着O点顺时针旋转90°,所得的图形与△OAC正好拼成等腰直角三角形BC+AC等于等腰三角形的斜边CD.
    【详解】
    解:
    将△OBC绕O点旋转90°,
    ∵OB=OA
    ∴点B落在A处,点C落在D处
    且有OD=OC=3,∠COD=90°,∠OAD=∠OBC,
    在四边形OACB中
    ∵∠BOA=∠BCA=90°,
    ∴∠OBC+∠OAC=180°,
    ∴∠OAD+∠OAC=180°
    ∴C、A、D三点在同一条直线上,
    ∴△OCD为等要直角三角形,根据勾股定理
    CD2=OC2+OD2
    即CD2=32+32=18
    解得CD=
    即BC+AC=.
    本题考查旋转的性质,旋转前后的图形对应边相等,对应角相等.要求两条线段的长,可利用作图的方法将两条线段化成一条线段,再求这条线段的长度即可,本题就是利用旋转的方法做到的,但做本题时需注意,一定要证明C、A、D三点在同一条直线上.本题还有一种化一般为特殊的方法,因为答案一定可考虑CB⊥y轴的情况,此时四边形OACB刚好是正方形,在做选择或填空题时,也可以起到事半功倍的效果.
    20、1
    【解析】
    ∵x>5∴x相当于已知调和数1,代入得,解得,x=1.
    21、1
    【解析】
    先求出体育优秀的占总体的百分比,再乘以360°即可.
    【详解】
    解:圆心角的度数是:
    故答案为:1.
    本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.
    22、5.
    【解析】
    由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.
    【详解】
    证明:∵BD为∠ABC的平分线,
    ∴∠EBD=∠CBD,
    又∵EF∥BC,
    ∴∠EDB=∠CBD,
    ∴∠EBD=∠EDB,
    ∴EB=ED,
    同理FC=FD,
    又∵EF=ED+DF,
    ∴EF=EB+FC=5.
    此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB
    23、1
    【解析】
    由题意可知EF为梯形ABCD的中位线,根据梯形中位线等于上底加下底的和的一半可得答案.
    【详解】
    ∵四边形ABCD中,AD//BC
    ∴四边形ABCD为梯形,
    ∵E、F分别是AB、CD的中点
    ∴EF是梯形ABCD的中位线
    ∴EF===1
    故答案为:1.
    本题考查梯形的中位线,熟练掌握梯形中位线的性质是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)四边形是平行四边形,见解析.
    【解析】
    (1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB≌△ADC;
    (2)四边形BCEF是平行四边形,因为△AFB≌△ADC,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC,则可得到FB∥AC,又BC∥EF,所以四边形BCEF是平行四边形;
    【详解】
    证明:(1)∵和都是等边三角形,
    ∴,

    又∵,

    ∴,
    在和中,
    ∴;
    (2)由①得,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵,
    ∴四边形是平行四边形.
    本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.
    25、(1)y1=36x;(2)当0≤x≤10时,y2=42x,当x>10时,y2=33.6x+84;(3)若购买35个书包,选A,B品牌都一样,若购买35个以上书包,选B品牌划算,若购买书包个数超过10个但小于35个,选A品牌划算
    【解析】
    (1)直接利用购买A品牌书包按原价的九折销售,进而得出函数关系式;
    (2)分别利用当0≤x≤10时,当x>10时,分别得出函数关系式;
    (3)分别利用①当y1=y2时,②当y1>y2时,③当y1<y2时,求出答案.
    【详解】
    解:(1)由题意可得:y1=36x;
    (2)当0≤x≤10时,y2=42x;
    当x>10时,y2=42×10+42×0.8(x-10)=33.6x+84;
    (3)若x>10,则y2=33.6x+84,
    ①当y1=y2时,36x=33.6x+84,
    解得:x=35;
    ②当y1>y2时,36x>33.6x+84,
    解得:x>35;
    ③当y1<y2时,36x<33.6x+84,
    解得:x<35;
    ∵x>10,
    ∴10<x<35,
    答:若购买35个书包,选A,B品牌都一样;若购买35个以上书包,选B品牌划算;
    若购买书包个数超过10个但小于35个,选A品牌划算.
    此题主要考查了一次函数的应用,正确得出函数关系式进而分类讨论是解题关键.
    26、(1);(2);(3)P(,0).
    【解析】
    (1)把A的坐标代入即可求出结果;
    (2)先把B的坐标代入得到B(4,1),把A和B的坐标,代入即可求得一次函数的解析式;
    (3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,求出直线AB′与x轴的交点即为P点的坐标.
    【详解】
    (1)把A(1,4)代入得:m=4,
    ∴反比例函数的解析式为:;
    (2)把B(4,n)代入得:n=1,∴B(4,1),把A(1,4),B(4,1)代入,得:,
    ∴,
    ∴一次函数的解析式为:;
    (3)作点B关于x轴的对称点B′,连接AB′交x轴于P,则AB′的长度就是PA+PB的最小值,由作图知,B′(4,﹣1),
    ∴直线AB′的解析式为:,当y=0时,x=,
    ∴P(,0).
    题号





    总分
    得分
    批阅人

    相关试卷

    2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】:

    这是一份2024-2025学年云南省曲靖市罗平县数学九年级第一学期开学综合测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年云南省普洱市名校数学九上期末综合测试模拟试题含答案:

    这是一份2023-2024学年云南省普洱市名校数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    云南省普洱市2023-2024学年数学九上期末监测模拟试题含答案:

    这是一份云南省普洱市2023-2024学年数学九上期末监测模拟试题含答案,共8页。试卷主要包含了一元二次方程的根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map