云南省普洱市2023-2024学年数学九上期末监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.学生作业本每页大约为7.5忽米(1厘米=1000忽米),请用科学计数法将7.5忽米记为米,则正确的记法为( )
A.7.5×米B.0.75×米C.0.75×米D.7.5×米
2.如图,直线AC,DF被三条平行线所截,若 DE:EF=1:2,AB=2,则AC的值为( )
A.6B.4C.3D.
3.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则csA的值为( )
A.B.C.D.
4.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )
A.B.C.D.
5.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:
①当时,;②;③;④.
其中正确的有( )
A.1个B.2个C.3个D.4个
6.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为( )
A.B.C.D.
7.如图,已知在△ABC中,DE∥BC,,DE=2,则BC的长是( )
A.3B.4C.5D.6
8.一元二次方程的根是( )
A.B.C.D.
9.抛物线y=3x2向右平移一个单位得到的抛物线是( )
A.y=3x2+1B.y=3x2﹣1C.y=3(x+1)2D.y=3(x﹣1)2
10.下列二次根式中,与是同类二次根式的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是_____.
12.如果∠A是锐角,且sinA= ,那么∠A=________゜.
13.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.
14.___________.
15.如图,起重机臂长,露在水面上的钢缆长,起重机司机想看看被打捞的沉船情况,在竖直平面内把起重机臂逆时针转动到的位置,此时露在水面上的钢缆的长度是___________.
16.计算:=________.
17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.
18.点关于轴的对称点的坐标是__________.
三、解答题(共66分)
19.(10分)某小型工厂9月份生产的、两种产品数量分别为200件和100件,、两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了、两种产品的生产数量和出厂单价,10月份产品生产数量的增长率和产品出厂单价的增长率相等,产品生产数量的增长率是产品生产数量的增长率的一半,产品出厂单价的增长率是产品出厂单价的增长率的2倍,设产品生产数量的增长率为(),若10月份该工厂的总收入增加了,求的值.
20.(6分)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=且经过A,C两点,与x轴的另一交点为点B.
(1)求抛物线解析式.
(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
21.(6分)如图1,抛物线y=ax2+bx+c的顶点(0,5),且过点(﹣3,),先求抛物线的解析式,再解决下列问题:
(应用)问题1,如图2,线段AB=d(定值),将其弯折成互相垂直的两段AC、CB后,设A、B两点的距离为x,由A、B、C三点组成图形面积为S,且S与x的函数关系如图所示(抛物线y=ax2+bx+c上MN之间的部分,M在x轴上):
(1)填空:线段AB的长度d= ;弯折后A、B两点的距离x的取值范围是 ;若S=3,则是否存在点C,将AB分成两段(填“能”或“不能”) ;若面积S=1.5时,点C将线段AB分成两段的长分别是 ;
(2)填空:在如图1中,以原点O为圆心,A、B两点的距离x为半径的⊙O;画出点C分AB所得两段AC与CB的函数图象(线段);设圆心O到该函数图象的距离为h,则h= ,该函数图象与⊙O的位置关系是 .
(提升)问题2,一个直角三角形斜边长为c(定值),设其面积为S,周长为x,证明S是x的二次函数,求该函数关系式,并求x的取值范围和相应S的取值范围.
22.(8分)问题呈现:
如图 1,在边长为 1 小的正方形网格中,连接格点 A、B 和 C、D,AB 和 CD 相交于点 P,求 tan ∠CPB 的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠ CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 B、 E,可得 BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB 就变换到 Rt△ABE 中.问题解决:
(1)直接写出图 1 中 tan CPB 的值为______;
(2)如图 2,在边长为 1 的正方形网格中,AB 与 CD 相交于点 P,求 cs CPB 的值.
23.(8分)如图,AB为半圆O的直径,点C在半圆上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC
(1)求证:AD是半圆O的切线;
(2)求证:△ABC∽△DOA;
(3)若BC=2,CE=,求AD的长.
24.(8分)一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
25.(10分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.
(1)求点B的坐标及直线AB的解析式;
(2)判断四边形CBED的形状,并说明理由.
26.(10分)如图,中,,以为直径作半圆交与点,点为的中点,连结.
(1)求证:是半圆的切线;
(2)若,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、D
4、B
5、C
6、B
7、D
8、D
9、D
10、A
二、填空题(每小题3分,共24分)
11、-8
12、1
13、3.
14、
15、30m
16、-1
17、1.
18、
三、解答题(共66分)
19、5%
20、(1)抛物线的解析式为;(2)抛物线存在点M,点M的坐标或或或
21、抛物线的解析式为:y=﹣x2+5;(2)20<x<2,不能,+和﹣;(2),相离或相切或相交;(3)相应S的取值范围为S>c2.
22、(1)2;(2)
23、(1)见解析;(2)见解析;(3)
24、(1)y=﹣x+150(0<x≤90);(2)70
25、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
26、(1)见解析;(2)1.
售价x(元/千克)
…
50
60
70
80
…
销售量y(千克)
…
100
90
80
70
…
云南省曲靖市沾益县2023-2024学年九上数学期末学业质量监测模拟试题含答案: 这是一份云南省曲靖市沾益县2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,抛物线y=﹣等内容,欢迎下载使用。
2023-2024学年云南省普洱市名校数学九上期末综合测试模拟试题含答案: 这是一份2023-2024学年云南省普洱市名校数学九上期末综合测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
云南省普洱市名校2023-2024学年数学九上期末调研试题含答案: 这是一份云南省普洱市名校2023-2024学年数学九上期末调研试题含答案,共8页。试卷主要包含了如图,二次函数的图象与轴交于点,下列说法正确的是等内容,欢迎下载使用。