![中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测02二次函数的最值(4种类型)特训(原卷版+解析)第1页](http://img-preview.51jiaoxi.com/2/3/16219374/0-1728103330423/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测02二次函数的最值(4种类型)特训(原卷版+解析)第2页](http://img-preview.51jiaoxi.com/2/3/16219374/0-1728103330500/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测02二次函数的最值(4种类型)特训(原卷版+解析)第3页](http://img-preview.51jiaoxi.com/2/3/16219374/0-1728103330530/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:中考数学考前必刷题型突破方案(安徽专版)考点过关特训(原卷版+解析)
- 中考数学考前必刷题型突破方案(安徽专版)安徽省中考数学预测卷特训(原卷版+解析) 试卷 0 次下载
- 中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测01一次函数、反比例函数的综合题(2种类型)特训(原卷版+解析) 试卷 0 次下载
- 中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测03相似模型的应用(4种模型)特训(原卷版+解析) 试卷 0 次下载
- 中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测04解直角三角形及其应用(2种类型)特训(原卷版+解析) 试卷 0 次下载
- 中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测05关于中点的联想(4种类型)(模拟18题真题4题)特训(原卷版+解析) 试卷 0 次下载
中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测02二次函数的最值(4种类型)特训(原卷版+解析)
展开
这是一份中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测02二次函数的最值(4种类型)特训(原卷版+解析),共38页。
二次函数的最值(10年10考)
题型1:对称轴和取值范围已知
题型2:对称轴不确定,取值范围已知
题型3:取值范围不确定,对称轴已知
题型4:实际应用问题,自变量的取值范围不含顶点
命题规律与备考策略
研究二次函数的最值,一般需要三个条件:(1)图象的开口方向;(2)对称轴(由对称轴看增减性);(3)自变量的取值范围。在此基础上找到取得最值的点解决问题。
【安徽最新模拟练】
题型1:对称轴和取值范围已知
一、填空题
1.(2023·安徽合肥·统考二模)已知函数(m为常数)的图形经过点.
(1)___________.
(2)当时,y的最大值与最小值之和为2,则n的值___________.
2.(2023·安徽滁州·统考一模)已知抛物线(m是常数,且)经过点.
(1)该抛物线的顶点坐标为_________;
(2)若一次函数的图象与二次函数的图象的交点坐标分别是,且,则的最大值为_________.
3.(2023·安徽合肥·统考模拟预测)已知:抛物线.
(1)此抛物线的对称轴为直线____;
(2)当时,y的最小值为−4,则______.
4.(2022·安徽合肥·校考二模)已知抛物线
(1)抛物线的对称轴为_____;
(2)若当时,y的最大值是1,求当时,y的最小值是_____.
二、解答题
5.(2023·安徽合肥·合肥38中校考二模)已知抛物线C:y=x2﹣2bx+c;
(1)若抛物线C的顶点坐标为(1,﹣3),求b、c的值;
(2)当c=b+2,0≤x≤2时,抛物线C的最小值是﹣4,求b的值;
(3)当c=b2+1,3≤x≤m时,x2﹣2bx+c≤x﹣2恒成立,则m的最大值为_________.
6.(2022·安徽合肥·合肥市第四十五中学校考三模)已知抛物线与x轴交于点,,直线交抛物线于点A、C.
(1)求抛物线的表达式;
(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线对称抛物线的解析式;
(3)在(2)的条件下,点M是x轴上方的抛物线上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN-2ON,求W的最大值.
题型2:对称轴不确定,取值范围已知
一、单选题
1.(2022·安徽滁州·统考一模)已知抛物线过(1,m),(-1,3m)两点,若,且当时,y的最小值为-6,则m的值是( )
A.4B.2C.–2D.-4
二、填空题
2.(2023·安徽合肥·合肥市第四十二中学校考一模)已知二次函数.
(1)当时,二次函数的最小值为________;
(2)当时,二次函数的最小值为1,则________.
3.(2023·安徽马鞍山·校考一模)设二次函数与x轴的交点为,若且y的最小值为.
(1)_____;
(2)当时,不等式恒成立,则实数a的取值范围为 _____.
三、解答题
4.(2022·安徽合肥·统考二模)已知二次函数(,是常数).
(1)当,时,求二次函数的最大值;
(2)当时,函数有最大值为7,求的值;
(3)当且自变量时,函数有最大值为10,求此时二次函数的表达式.
题型3:取值范围不确定,对称轴已知
1.(2022·安徽滁州·校考一模)在平面直角坐标系中,已知抛物线:和直线;,点,均在直线上.
(1)求直线的表达式;
(2)若抛物线与直线有交点,求的取值范围;
(3)当,二次函数的自变量满足时,函数的最大值为,求的值;
题型4:实际应用问题,自变量的取值范围不含顶点
一、解答题
1.(2023·安徽亳州·校考模拟预测)某工厂生产并出售移动式的销售小棚,如图(1)是这种小棚的侧面,是由矩形和抛物线构成,是横梁,抛物线最高点E到横梁的距离为2米,已知米,如图,以为x轴,以的垂直平分线为y轴,建立平面直角坐标系.
(1)求抛物线所对应的函数解析式;
(2)如图,在抛物线和横梁之间修建一个矩形广告牌,已知与关于y轴对称,在横梁上,需要准备框边、、,求框边长度的最大值;
(3)该工厂每个月最多能生产160个含有广告牌的小棚,生产成本为每个500元,若以单价650元出售该种小棚,每月能售出100个,若单价为每降低10元,每月能多售出20个,求该工厂每个月销售这种小棚的最大利润W(元)是多少?
2.(2023·山东潍坊·统考模拟预测)小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,当售价为30元时销量为200件,每涨1元少卖10件,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
【安徽实战真题练】
一、填空题
1.(2021·安徽·统考中考真题)设抛物线,其中a为实数.
(1)若抛物线经过点,则______;
(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.
二、解答题
2.(2017·安徽·中考真题)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);
(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
3.(2015·安徽·统考中考真题)为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
4.(2019·安徽·统考中考真题)一次函数y=kx+4与二次函数y=ax2+c的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点
(1)求k,a,c的值;
(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图像相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.
5.(2020·安徽·统考中考真题)在平面直角坐标系中,已知点,直线经过点.抛物线恰好经过三点中的两点.
判断点是否在直线上.并说明理由;
求的值;
平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.
6.(2018·安徽·统考中考真题)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
7.(2013·安徽·中考真题)某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示.
(1)请计算第几天该商品的销售单价为35元/件?
(2)求该网店第x天获得的利润y关于x的函数关系式.
(3)这40天中该网店第几天获得的利润最大?最大利润是多少?
8.(2014·安徽·统考中考真题)若两个二次函数图像的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数,和,其中的图像经过点A(1,1),若与为“同簇二次函数”,求函数的表达式,并求当时,的最大值.
9.(2022·安徽·统考中考真题)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.
(1)求此抛物线对应的函数表达式;
(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段,,,MN长度之和.请解决以下问题:
(ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED上.设点的横坐标为,求栅栏总长l与m之间的函数表达式和l的最大值;
(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).
售价x/(元/千克)
50
60
70
销售量y/千克
100
80
60
销售量p(件)
P=50—x
销售单价q(元/件)
当1≤x≤20时,当21≤x≤40时,
提分冲刺预测02二次函数的最值(4种类型)
【安徽十年真题考点及分值细目表】
二次函数的最值(10年10考)
题型1:对称轴和取值范围已知
题型2:对称轴不确定,取值范围已知
题型3:取值范围不确定,对称轴已知
题型4:实际应用问题,自变量的取值范围不含顶点
命题规律与备考策略
研究二次函数的最值,一般需要三个条件:(1)图象的开口方向;(2)对称轴(由对称轴看增减性);(3)自变量的取值范围。在此基础上找到取得最值的点解决问题。
【安徽最新模拟练】
题型1:对称轴和取值范围已知
一、填空题
1.(2023·安徽合肥·统考二模)已知函数(m为常数)的图形经过点.
(1)___________.
(2)当时,y的最大值与最小值之和为2,则n的值___________.
【答案】 4 或
【分析】(1)把已知坐标代入解析式计算即可.
(2)根据抛物线额性质,分类计算.
【详解】(1)∵函数(m为常数)的图形经过点.
∴,
解得,
故答案为:4.
(2)∵函数(m为常数)的图形经过点.
∴,
解得,
∴函数的解析式为,
∴,
故抛物线的对称轴为直线,二次函数的最小值为,
的对称点为,
当时,y的最大值与最小值之和为2,
当时,最大值为5,时,取得最小值,且为,
根据题意,得,
解得(舍去),
故;
当时,最大值为5,时,取得最小值,且为,
根据题意,得,不符合题意;
当时,时,取得最小值,且为,时,取得最大值,且为,
根据题意,得,
解得(舍去),
故;
故答案为或.
【点睛】本题考查了抛物线的对称性,增减性,熟练掌握函数的性质是解题的关键.
2.(2023·安徽滁州·统考一模)已知抛物线(m是常数,且)经过点.
(1)该抛物线的顶点坐标为_________;
(2)若一次函数的图象与二次函数的图象的交点坐标分别是,且,则的最大值为_________.
【答案】 9
【分析】(1)将点代入抛物线,求出m的值,再将抛物线解析式表示成顶点式即可求解;
(2)将一次函数和二次函数解析式联立,求出,然后表示出,求出的表达式,再将表达式化为顶点式,求二次函数的最值即可.
【详解】(1)将点代入抛物线,得,
解得,
∴,
∴该抛物线的顶点坐标为,
故答案为:;
(2)联立,整理得,
解得,
∵,
∴,
∴,
∴,
∴,
∴当时,的值最大,最大值为9,
故答案为:9.
【点睛】本题考查了待定系数法求二次函数解析式,二次函数的最值,二次函数的顶点式,一次函数与二次函数的交点问题,熟练掌握知识点是解题的关键.
3.(2023·安徽合肥·统考模拟预测)已知:抛物线.
(1)此抛物线的对称轴为直线____;
(2)当时,y的最小值为−4,则______.
【答案】 1 4或
【分析】(1)根据抛物线的解析式可得,再代入对称轴进行计算即可;
(2)根据二次函数的图象与性质可知当 当时,在,函数有最小值,当时,在中,当时,函数有最小值,再根据y的最小值为−4代入进行计算即可.
【详解】解:(1)由抛物线可知,,
对称轴,
故答案为:1;
(2)当时,在,函数有最小值,
∵y的最小值为,
,
;
当时,在中,当时,函数有最小值,
,解得;
综上所述:a的值为4或.
【点睛】本题考查了二次函数的图象与性质、二次函数的最值及对称轴,熟练掌握二次函数的性质和对称轴公式是解决问题的关键.
4.(2022·安徽合肥·校考二模)已知抛物线
(1)抛物线的对称轴为_____;
(2)若当时,y的最大值是1,求当时,y的最小值是_____.
【答案】 直线
【分析】(1)根据抛物线的对称轴公式即可得结论;
(2)根据抛物线的对称轴为直线,可得顶点在范围内,y的最大值是1,得顶点坐标为,把顶点代入,可得a的值,进而可得y的最小值.
【详解】解:(1)抛物线的对称轴为:直线,
故答案为:直线;
(2)∵抛物线,
∴该函数图象的开口向下,对称轴是直线,当时,取得最大值,
∵当时,y的最大值是1,
∴时,,得,
∴,
∵,
∴时,取得最小值,此时,
故答案为:.
【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,求出a的值,利用二次函数的性质解答.
二、解答题
5.(2023·安徽合肥·合肥38中校考二模)已知抛物线C:y=x2﹣2bx+c;
(1)若抛物线C的顶点坐标为(1,﹣3),求b、c的值;
(2)当c=b+2,0≤x≤2时,抛物线C的最小值是﹣4,求b的值;
(3)当c=b2+1,3≤x≤m时,x2﹣2bx+c≤x﹣2恒成立,则m的最大值为_________.
【答案】(1)b=1,c=﹣2
(2)b的值为﹣6或
(3)4
【分析】(1)抛物线C的顶点坐标为(1,﹣3),代入解析式即可求解;
(2)将c=b+2代入抛物线解析式,可得对称轴为x=b,分三种情况讨论①当b<0时,②当0≤b≤2时,③当b>2时,根据抛物线C的最小值是﹣4,列出方程组即可求解;
(3)当c=b2+1时,抛物线C的解析式为y=(x﹣b)2+1,即抛物线C的顶点在直线y=1上移动,设抛物线C与直线y=x﹣2除顶点外的另一个交点为M,此时点M的横坐标即为m的最大值,结合图象列出不等式组,解不等式组即可求解.
【详解】(1)解:∵抛物线C的顶点坐标为(1,﹣3),
∴y=(x﹣1)2﹣3=x2﹣2x﹣2,
∴﹣2b=﹣2,b=1,c=﹣2;
(2)∵c=b+2
∴y=x2﹣2bx+c=x2﹣2bx+b+2,对称轴为x=b,
①当b<0时,由题意可知b+2=﹣4,解得b=﹣6,符合题意;
②当0≤b≤2时,,解得b1=3,b2=﹣2,不合题意舍去;
③当b>2时,根据题意可知22﹣4b+b+2=﹣4,解得b=,符合题意;
综上所述,所求b的值为﹣6或.
(3)当c=b2+1时,抛物线C的解析式为y=(x﹣b)2+1,
如图所示,抛物线C的顶点在直线y=1上移动,
当3≤x≤m时,x2﹣2bx+c≤x﹣2恒成立,
则可知抛物线C的顶点坐标为(3,1),
设抛物线C与直线y=x﹣2除顶点外的另一个交点为M,
此时点M的横坐标即为m的最大值,
由解得x1=3,x2=4,
∴m的最大值为4.
【点睛】本题考查了二次函数图象的性质,二次函数与一次函数交点问题,待定系数法求解析式,二次函数最值问题,数形结合是解题的关键.
6.(2022·安徽合肥·合肥市第四十五中学校考三模)已知抛物线与x轴交于点,,直线交抛物线于点A、C.
(1)求抛物线的表达式;
(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线对称抛物线的解析式;
(3)在(2)的条件下,点M是x轴上方的抛物线上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN-2ON,求W的最大值.
【答案】(1);
(2);
(3)3
【分析】(1)直接用待定系数法求解即可;
(2)找出抛物线的顶点坐标,用待定系数法求解即可;
(3)用含m的式子表示出MN、ON的长度,然后分类讨论m的取值范围,利用二次函数求最值即可.
(1)
解:由题意知:把点,代入得,
,解得:,
∴抛物线的表达式为:.
(2)
解:由题意可知:由(1)知抛物线的顶点式为:
∴顶点坐标为:(-1,-4),
∴抛物线的顶点坐标为:(-1,4),
抛物线的解析式为:,
把代入抛物线的解析式为:得,
,
解得:m=-1,
∴抛物线的解析式为:,
即:抛物线的解析式为:.
(3)
解:由题意知:点M是x轴上方的抛物线上的点,
∴M(,),N(,0),,
当时,,
∴W=MN-2ON=
即
∴
∵
∴抛物线的开口向下,函数有最大值,
∴当时,W有最大值为3.
当时,,,
∴W=MN-2ON=
即
∴
∵
∴抛物线的开口向下,函数有最大值,
在m=-2的右侧,W随m的增大而减小,
∴当m=0时,W的值最大为3.
综上所述,当m=0时,W有最大值即m=0,W=3.
【点睛】本题考查了待定系数法求二次函数的解析式、利用函数图像及其性质求最值等知识,解决本题的关键就是利用数形结合的思想和准确的计算.
题型2:对称轴不确定,取值范围已知
一、单选题
1.(2022·安徽滁州·统考一模)已知抛物线过(1,m),(-1,3m)两点,若,且当时,y的最小值为-6,则m的值是( )
A.4B.2C.–2D.-4
【答案】C
【分析】将点(1,m),(-1,3m)代入抛物线,得1+b+c=m,1-b+c=3m,得出b=-m,c=2m-1,再分情况讨论:①对称轴x=-≥1时,最小值在x=1处;②-1<对称轴x=-≤1时,最小值在x=-处.
【详解】解:将点(1,m),(-1,3m)代入抛物线,得
1+b+c=m,1-b+c=3m,
∴b=-m,c=2m-1
则,
对称轴为,
∵a=1>0
∴最小值在x=-处,最小值为-6,
∴=-6,
=4c+24,
将b=-m,c=2m-1代入,得
-8m-20=0
解得m=-2或m=10
又
∴m=-2
故选:C.
【点睛】本题主要考查抛物线的最值问题,通过讨论对称轴的位置进而确定最值,数形结合是解决问题的关键.
二、填空题
2.(2023·安徽合肥·合肥市第四十二中学校考一模)已知二次函数.
(1)当时,二次函数的最小值为________;
(2)当时,二次函数的最小值为1,则________.
【答案】 或
【分析】(1)将代入,再把解析式为变形为顶点式,即可求得二次函数最小值;
(2)先求抛物线的对称轴为:,分三种情况:当时,即时,此时在对称轴的右侧,当时,即时,此时对称轴在内,③当时,即时,此时在对称轴的左侧,分别讨论增减性,找何时取最小值,代入得关于的方程求解即可.
【详解】解:(1)当时,,
∵,则开口向上,
∴二次函数的最小值为,
故答案为:;
(2)二次函数,则对称轴为:,
分三种情况:
①当时,即时,此时在对称轴的右侧,随的增大而增大,
∴当时,有最小值,,解得:;
②当时,即时,此时对称轴在内,
当时,随的增大而减小,当时,随的增大而增大,
∴当时,有最小值,,解得:;
∵,
∴,
③当时,即时,此时在对称轴的左侧,随的增大而减小,
∴当时,有最小值,,解得:(舍去);
综上所述,或;
故答案为:或
【点睛】本题考查了二次函数的最值问题,是常考题型;但本题比较复杂,运用了分类讨论的思想,做好此类题要掌握以下几点:形如二次函数:①当时,抛物线有最小值,当时,;②当时,对称轴右侧,随的增大而增大,对称轴的左侧,随的增大而减小;③如果自变量在某一范围内求最值,要看对称轴,开口方向及图象.
3.(2023·安徽马鞍山·校考一模)设二次函数与x轴的交点为,若且y的最小值为.
(1)_____;
(2)当时,不等式恒成立,则实数a的取值范围为 _____.
【答案】
【分析】(1)先根据题意判断出,然后利用在顶点处取最小值以及推出,再根据即可解答;
(2)根据二次函数图像和性质列出不等式求解即可.
【详解】解:(1)根据题意可知,二次函数的最小值为,
∴图像是开口向上的,则,
∴当时,,
∴,整理得:,
∵
∴,
∵二次函数与x轴的交点为,
∴,即,
故答案为:;
(2)由(1)可知:,即,
∵当时,不等式恒成立,
∴,整理得:,
∵,抛物线的对称轴为直线,
∴当时,
∴解得:,与矛盾,舍去;
当时,
∵,
∴,解得:
∴实数a的取值范围为;
当时,
∵,
∴,解得:与矛盾,舍去
综上,当时,不等式恒成立,则实数a的取值范围为.
故答案为:.
【点睛】本题主要考查了二次函数图像和性质、二次函数的图像和系数的关系、二次函数的最值等,掌握二次函数的基本性质和运用分情况讨论解决问题是解题的关键.
三、解答题
4.(2022·安徽合肥·统考二模)已知二次函数(,是常数).
(1)当,时,求二次函数的最大值;
(2)当时,函数有最大值为7,求的值;
(3)当且自变量时,函数有最大值为10,求此时二次函数的表达式.
【答案】(1)当x=-3时,
(2)b=±1
(3)二次函数的表达式:或
【分析】(1)将b=3,c=4时代入并化简,从而求出二次函数的最大值;
(2)当c=6时,,根据函数的最大值列方程,从而求出的值;
(3)当,对称轴为x=-b,分-b
相关试卷
这是一份中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测07网格作图题(5种题型)特训(原卷版+解析),共32页。
这是一份中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测06隐圆问题(3种类型模拟14题真题2题)特训(原卷版+解析),共23页。
这是一份中考数学考前必刷题型突破方案(安徽专版)提分冲刺预测05关于中点的联想(4种类型)(模拟18题真题4题)特训(原卷版+解析),共57页。