|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】
    立即下载
    加入资料篮
    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】01
    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】02
    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】

    展开
    这是一份2024年山西省朔州地区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)实数的值在( )
    A.0与1之间B.1与2之间C.2与3之间D.3与4之间
    2、(4分)下列各点中,在函数y=﹣2x的图象上的是( )
    A.(,1)B.(﹣,1)C.(﹣,﹣1) D(0,﹣1)
    3、(4分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成( )
    A.10组B.9组C.8组D.7组
    4、(4分)一次函数是(是常数,)的图像如图所示,则不等式的解集是( )
    A.B.C.D.
    5、(4分)下列手机软件图标中,既是轴对称图形又是中心对称图形的是( )
    A.B.C.D.
    6、(4分)电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的座位简记为(12,12),则小明与小菲坐的位置为( )
    A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排
    7、(4分)在平面直角坐标系中,把△ABC先沿x轴翻折,再向右平移3个单位,得到△A1B1C1,把这两步操作规定为翻移变换,如图,已知等边三角形ABC的顶点B,C的坐标分别是(1,1),(3,1).把△ABC经过连续3次翻移变换得到△A3B3C3,则点A的对应点A3的坐标是( )
    A.(5,﹣)B.(8,1+)C.(11,﹣1﹣)D.(14,1+)
    8、(4分)若一元二次方程ax2+bx+c=0(a≠0)有一个根为-1,则a-b+c的值是( )
    A.-1B.1C.0D.不能确定
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件_________(只添一个即可),使四边形ABCD是平行四边形.
    10、(4分)如图,小明作出了边长为2的第1个正△,算出了正△的面积.然后分别取△的三边中点、、,作出了第2个正△,算出了正△的面积;用同样的方法,作出了第3个正△,算出了正△的面积,由此可得,第2个正△的面积是__,第个正△的面积是__.
    11、(4分)如图所示,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF=____________.
    12、(4分)直角三角形的两边长为6cm,8cm,则它的第三边长是_____________。
    13、(4分)一个正多边形的每个内角度数均为135°,则它的边数为____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.
    15、(8分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.
    (1)求证:BD∥AC;
    (2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;
    (3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.
    16、(8分)计算:
    (1);
    (2)(﹣)(+)+(﹣1)2
    17、(10分)已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.
    (1)求该二次函数的解析式及点,的坐标;
    (2)点是轴上的动点,
    ①求的最大值及对应的点的坐标;
    ②设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.
    18、(10分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
    甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
    乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
    设购买银杏树苗x棵,到两家购买所需费用分别为元、元
    (1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
    (2)当时,分别求出、与x之间的函数关系式;
    (3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)将二次函数化成的形式,则__________.
    20、(4分)计算(4+)÷3的结果是_____.
    21、(4分)反比例函数与一次函数的图像的一个交点坐标是,则 =________.
    22、(4分)廖老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如下表:
    则这10名学生周末利用网络进行学习的平均时间是________小时.
    23、(4分)某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y(℃)与开机时间x(分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:
    (1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;
    (2)求图中t的值;
    (3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?
    25、(10分)计算
    26、(12分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.
    (1)如图,求证:;
    (2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;
    (3)如图,在(2)的条件下,若,,求BM的长度.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    直接利用二次根式的估算,的值在1和,即可得出结果.
    【详解】
    解:∵1<<,
    ∴实数的值在1与2之间.
    故选:B.
    此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.
    2、B
    【解析】
    把四个选项中的点分别代入解析式y=-2x,通过等式左右两边是否相等来判断点是否在函数图象上.
    【详解】
    A、把(,1)代入函数y=-2x得:左边=1,右边=-1,左边≠右边,所以点(,1)不在函数y=-2x的图象上,故本选项不符合题意;
    B、把(-,1)代入函数y=-2x得:左边=1,右边=1,左边=右边,所以点(-,1)在函数y=-2x的图象上,故本选项符合题意;
    C、把(-,-1)代入函数y=-2x得:左边=-1,右边=1,左边≠右边,所以点(-,-1)不在函数y=-2x的图象上,故本选项不符合题意;
    D、把(0,-1)代入函数y=-2x得:左边=-1,右边=0,左边≠右边,所以点(0,-1)不在函数y=-2x的图象上,故本选项不符合题意;
    故选B.
    本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式.
    3、A
    【解析】
    在这组数据中最大值为143,最小值为50,它们的差为143-50=93,已知组距为10,可知93÷10=9.3,故可以分成10组.
    故选A.
    此题主要考查了频数直方图的组距,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.
    4、C
    【解析】
    根据一次函数的图象看出:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),得到当x>2时,y<1,即可得到答案.
    【详解】
    解:一次函数y=kx+b(k,b是常数,k≠1)的图象与x轴的交点是(2,1),
    当x>2时,y<1.
    故答案为:x>2.
    故选:C.
    本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.
    5、B
    【解析】
    试题分析:A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故A选项错误;
    B.∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故B选项正确.
    C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故C选项错误;
    D.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故B选项错误.
    考点:1.中心对称图形;2.轴对称图形.
    6、A
    【解析】
    ∵(12,6)表示12排6号,(12,12) 表示12排12号,
    ∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.
    故选A.
    考查学生利用类比点的坐标解决实际问题的能力和阅读理解能力.
    7、C
    【解析】
    首先把△ABC先沿x轴翻折,再向右平移3个单位得到△A BC得到点A 的坐标为(2+3,-1-),同样得出A 的坐标为(2+3+3,1+),…由此得出A 的坐标为(2+3x5,-1-),进一步选择答案即可
    【详解】
    ∵把△ABC先沿x轴翻折,再向右平移3个单位得到△A1B1C1得到点A1的坐标为(2+3,﹣1﹣),
    同样得出A2的坐标为(2+3+3,1+),

    A3的坐标为(2+3×3,﹣1﹣),即(11,﹣1﹣).
    故选:C.
    此题考查坐标与图形变化-对称,坐标与图形变化平移和规律型:点的坐标,解题关键在于找到规律
    8、C
    【解析】
    将x=-1代入方程,就可求出a-b+c的值.
    【详解】
    解:将x=-1代入方程得, a-b+c=0
    故答案为:C
    本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、BO=DO.
    【解析】
    解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.
    故答案为BO=DO.
    10、,
    【解析】
    根据等边三角形的性质求出正△A1B1C1的面积,根据三角形中位线定理得到,根据相似三角形的性质计算即可.
    【详解】
    正△的边长,
    正△的面积,
    点、、分别为△的三边中点,
    ,,,
    △△,相似比为,
    △与△的面积比为,
    正△的面积为,
    则第个正△的面积为,
    故答案为:;.
    本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
    11、10
    【解析】
    先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF的值.
    【详解】
    设BD=x,则CD=20−x,
    ∵△ABC是等边三角形,
    ∴∠B=∠C=60∘.
    ∴BE=cs60∘⋅BD=,
    同理可得,CF=,
    ∴BE+CF=+=10.
    本题考查等边三角形的性质,解题的关键是掌握等边三角形的性质.
    12、10cm或cm.
    【解析】
    分8cm的边为直角边与斜边两种情况,利用勾股定理进行求解即可.
    【详解】
    解:当8cm的边为直角边时,
    第三边长为=10cm;
    当8cm的边为斜边时,
    第三边长为cm.
    故答案为:10cm或cm.
    本题主要考查勾股定理,解此题的关键在于分情况讨论.
    13、8
    【解析】
    试题分析:多边形的每一个内角的度数=,根据公式就可以求出边数.
    【详解】
    设该正多边形的边数为n
    由题意得:=135°
    解得:n=8
    故答案为8.
    考点:多边形的内角和
    三、解答题(本大题共5个小题,共48分)
    14、在此图中存在两个全等的三角形,即△CDF≌△CBE.△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.理由见解析.
    【解析】
    在△CDF和△CBE中,根据正方形的性质知DC=BC、已知条件DF=BE可以证得△CDF≌△CBF.
    【详解】
    解:在此图中存在两个全等的三角形,即△CDF≌△CBE.理由如下:
    ∵点F在正方形ABCD的边AD的延长线上,
    ∴∠CDF=∠CDA=90°;
    在△CDF和△CBE中,

    ∴△CDF≌△CBE(SAS),
    ∴∠FCD=∠ECB,CF=CE,
    ∴∠FCE=∠FCD+∠DCE=∠ECB+∠DCE=∠DCB=90°,
    ∴△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.
    本题综合考查了正方形的性质、全等三角形的判定与性质以及旋转的性质.本题中通过全等三角形(△CDF≌△CBE)的对应角∠FCD与∠ECB相等是解答△CDF由△CBE所旋转的方向与角度的关键.
    15、(1)BD∥AC;(2);(3)
    【解析】
    (1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;
    (2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;
    (3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.
    【详解】
    (1),,
    ,,点B为线段OA的中点,
    点D为OC的中点,即BD为的中位线,

    (2)如图1,作于点F,取AB的中点G,则,
    ,BD与AC的距离等于2,

    在中,,,点G为AB的中点,

    是等边三角形,.

    设,则,
    根据勾股定理得:,


    点C在x轴的正半轴上,
    点C的坐标为;
    (3)如图2,当四边形ABDE为平行四边形时,,

    点D为OC的中点,




    点C在x轴的正半轴上,
    点C的坐标为,
    设直线AC的解析式为.
    将,得

    解得:.
    直线AC的解析式为.
    此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.
    16、 (1);(2).
    【解析】
    (1)先分别进行化简,然后再合并同类二次根式即可;
    (2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.
    【详解】
    (1)原式=
    =
    =;
    (2)原式=
    =.
    本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.
    17、(1),点坐标为,顶点的坐标为;(2)①最大值是,的坐标为,②的取值范围为或或.
    【解析】
    (1)先利用对称轴公式x=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;
    (2)根据三角形的三边关系:可知P、C、D三点共线时|PC-PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;
    (3)先把函数中的绝对值化去,可知,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2-2a|x|+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(-3,0),即点P与点(-3,0)重合时,线段PQ与当函数y=a|x|2-2a|x|+c(x<0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t的取值.
    【详解】
    解:(1)∵,
    ∴的对称轴为.
    ∵人最大值为4,
    ∴抛物线过点.
    得,
    解得.
    ∴该二次函数的解析式为.
    点坐标为,顶点的坐标为.
    (2)①∵,
    ∴当三点在一条直线上时,取得最大值.
    连接并延长交轴于点,.
    ∴的最大值是.
    易得直线的方程为.
    把代入,得.
    ∴此时对应的点的坐标为.
    ②的解析式可化为
    设线段所在直线的方程为,将,的坐标代入,可得线段所在直线的方程为.
    (1)当线段过点,即点与点重合时,线段与函数的图像只有一个公共点,此时.
    ∴当时,线段与函数的图像只有一个公共点.
    (2)当线段过点,即点与点重合时,线段与函数的图像只有一个公共点,此时.
    当线段过点,即点与点重合时,,此时线段与函数的图像有两个公共点.
    所以当时,线段与函数的图像只有一个公共点.
    (3)将带入,并整理,得.
    .
    令,解得.
    ∴当时,线段与函数的图像只有一个公共点.
    综上所述,的取值范围为或或.
    本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.
    18、 (1)610000元,640000元;(2),;(3)见解析.
    【解析】
    (1)由单价数量及可以得出购买树苗需要的费用;
    (2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
    (3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
    【详解】
    解:由题意,得.
    元,
    元;
    故答案为;640000
    当时,,,x为正整数,
    当时,到两家购买所需费用一样;
    时,甲家有优惠而乙家无优惠,所以到甲家购买合算;

    当时,,解得,当时,到两家购买所需费用一样;
    当y甲乙时,,
    当时,到甲家购买合算;
    当y甲乙时,,
    当时,到乙家购买合算.
    综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
    本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    利用配方法,加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.
    【详解】
    解:,


    故答案为:.
    本题考查了二次函数的三种形式:一般式:,顶点式:;两根式:.正确利用配方法把一般式化为顶点式是解题的关键.
    20、2
    【解析】
    先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.
    【详解】
    原式
    .
    故答案为:.
    本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
    21、-6
    【解析】
    根据题意得到ab=2,b-a=3,代入原式计算即可.
    【详解】
    ∵反比例函数与一次函数y=x+3的图象的一个交点坐标为(m,n),
    ∴b=,b=a+3,
    ∴ab=2,b-a=3,
    ∴= =2×(-3)=-6,
    故答案为:-6
    此题考查反比例函数与一次函数的交点问题,解题关键在于得到ab=2,b-a=3
    22、2.1
    【解析】
    依据加权平均数的概念求解可得.
    【详解】
    解:这10名学生周末利用网络进行学习的平均时间是:

    故答案为:2.1.
    本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.
    23、y=-x-1(答案不唯一).
    【解析】
    根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.
    【详解】
    解:设一次函数解析式为y=kx+b,
    ∵一次函数y随着x的增大而减小,
    ∴k<1.
    又∵直线过点(1,-2),
    ∴解析式可以为:y=-x-1等.
    故答案为:y=-x-1(答案不唯一).
    此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。
    二、解答题(本大题共3个小题,共30分)
    24、(1)y=8x+20;(2)t=50;(3)饮水机内的温度约为76℃
    【解析】
    (1)利用待定系数法代入函数解析式求出即可;
    (2)首先求出反比例函数解析式进而得出t的值;
    (3)利用已知由x=7代入求出饮水机内的温度即可.
    【详解】
    解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,
    依据题意,得,
    解得:,
    故此函数解析式为:y=8x+20;
    (2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,
    依据题意,得:100=,
    即m=1000,
    故y=,
    当y=20时,20=,
    解得:t=50;
    (3)∵57-50=7≤10,
    ∴当x=7时,y=8×7+20=76,
    答:小明散步57分钟回到家时,饮水机内的温度约为76℃.
    此题主要考查了一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键.
    25、
    【解析】
    根据二次根式的运算法则即可求出答案.
    【详解】
    原式=
    本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.
    26、(1)见解析;(2)见解析;(3).
    【解析】
    (1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;
    (2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;
    (3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.
    【详解】
    (1)(1)证明:∵四边形ABCD是正方形,
    ∴∠B=90°,
    ∴∠BAE+∠AEB=90°,
    ∵MN⊥AE于F,
    ∴∠BAE+∠AMN=90°,
    ∴∠AEB=∠AMN;
    (2)证明:连接AG、EG、CG,
    ∵四边形ABCD是正方形,
    ∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,
    在△ABG和△CBG中,

    ∴△ABG≌△CBG(SAS),
    ∴AG=CG,∠GAB=∠GCB,
    ∵MN⊥AE于F,F为AE中点,
    ∴AG=EG,
    ∴EG=CG,
    ∴∠GEC=∠GCE,
    ∴∠GAB=∠GEC,
    ∵∠GEB+∠GEC=180°,
    ∴∠GEB+∠GAB=180°,
    ∵四边形ABEG的内角和为360°,∠ABE=90°,
    ∴∠AGE=90°,
    在Rt△ABE 和Rt△AGE中,AE为斜边,F为AE的中点,
    ∴BF=AE,FG=AE,
    ∴BF=FG;
    (3)过G作交AD于点P,交BC于点Q,则 ,,
    中,, ,
    ∴ ,

    ∵,
    ∴ ,
    ∴ 即
    连接ME ∵于F,F为AE的中点,
    ∴MN是AE的垂直平分线
    ∴,
    由(2)知 ,,
    ∴,
    又,
    ∴,
    ∴ ,
    ∴ ,
    又,




    ∴四边形PDCQ为矩形


    ∵E是BC中点


    ∴ 即




    中,由勾股定理得
    ∴ 解得

    本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质、勾股定理等知识;本题综合性强,有一定难度.
    题号





    总分
    得分
    时间(单位:小时)
    4
    3
    2
    l
    0
    人数
    3
    4
    1
    1
    1
    相关试卷

    2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024年南安市数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年上海华亭学校九年级数学第一学期开学学业水平测试模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年广东惠城区数学九年级第一学期开学学业水平测试模拟试题【含答案】: 这是一份2024-2025学年广东惠城区数学九年级第一学期开学学业水平测试模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map