所属成套资源:中考数学解题大招复习讲义(全国通用)模型(原卷版+解析)
中考数学解题大招复习讲义(全国通用)模型03全等三角形中的常见五种基本模型(原卷版+解析)
展开
这是一份中考数学解题大招复习讲义(全国通用)模型03全等三角形中的常见五种基本模型(原卷版+解析),共51页。试卷主要包含了截长补短模型,平移全等模型,对称全等模型,旋转全等模型,手拉手全等模型等内容,欢迎下载使用。
全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.
模型一、截长补短模型
①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,
可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,
∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.
②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),
可得CF=FG=BN,∠DFC=∠BNC=135°,
又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,
所以BF=NG=NC+CG=DF+CG.
模型二、平移全等模型
模型三、对称全等模型
模型四、旋转全等模型
模型五、手拉手全等模型
例题精讲
模型一、截长补短模型
【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C= .
变式训练
【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为( )
A.60°B.70°C.80°D.90°
【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.
(1)求△CDE的面积;
(2)证明:DF+CF=EF.
模型二、平移全等模型
【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
变式训练
【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.
(1)求证:△ABC≌△DFE;
(2)求证:点O为BF的中点.
【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,∠ADC=60°,求CD的长.
模型三、对称全等模型
【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.
(1)求∠PAD的度数;
(2)求证:P是线段CD的中点.
变式训练
【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.
求证:AM=AN.
【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.
【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
模型四、旋转全等模型
【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.
变式训练
【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.
(1)如图1,点E在BC上,求证:BC=BD+BE;
(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.
【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是 3+4 .
模型五、手拉手全等模型
【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.
(1)求证:△AEC≌△ADB.
(2)猜想CE与DB之间的关系,并说明理由.
变式训练
【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个( )
A.1个B.2个C.3个D.4个
【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
【变式5-3】.(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.
(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?
实战演练
1.如图,已知,,且,,,则的度数为( )
A.B.C.D.
2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.
A.4B.3C.2D.1
3.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2= .
4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG; ②S△FGC=6;③EG=DE+BG;④BG=GC.其中正确的有 (填序号).
5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.
(1)求证:AF=CF
(2)求AF的长度.
6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE= cm.
(3)BE与AD有何位置关系?请说明理由.
7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;
(2)求证:CD=2BE+DE.
8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.
(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.
(2)求证:BE2+CF2=EF2.
(3)在(1)的条件下,求△DEF的面积.
9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.
10.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.
感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
①求证:∠B+∠D=180°;
②求AB的长.
11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.
(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.
(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.
12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为 .
(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若AB=12,求CF的最大值.
模型介绍
全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复.
模型一、截长补短模型
①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,
可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°,
∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG.
②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS),
可得CF=FG=BN,∠DFC=∠BNC=135°,
又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG,
所以BF=NG=NC+CG=DF+CG.
模型二、平移全等模型
模型三、对称全等模型
模型四、旋转全等模型
模型五、手拉手全等模型
例题精讲
模型一、截长补短模型
【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C= 27° .
解:在DC上截取DE=BD,连接AE,
∵AD⊥BC,DE=BD,
∴AD是BE的垂直平分线,
∴AB=AE,
∴∠B=∠AEB=54°,
∵AB+BD=DC,DE+EC=DC,
∴AB=EC,
∴AE=EC,
∴∠C=∠EAC,
∵∠C+∠EAC=∠AEB=54°,
∴∠C=∠EAC=∠AEB=27°,故答案为:27°.
变式训练
【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB=60°,且CA+AP=BC,则∠CAB的度数为( )
A.60°B.70°C.80°D.90°
解:如图,在BC上截取CE=AC,连接PE,
∵∠ACB=60°,
∴∠CAB+∠ABC=120°
∵点P是△ABC三个内角的角平分线的交点,
∴∠CAP=∠BAP=∠CAB,∠ABP=∠CBP=∠ABC,∠ACP=∠BCP,
∴∠ABP+∠BAP=60°
∵CA=CE,∠ACP=∠BCP,CP=CP
∴△ACP≌△ECP(SAS)
∴AP=PE,∠CAP=∠CEP
∵CA+AP=BC,且CB=CE+BE,
∴AP=BE,
∴BE=PE,
∴∠EPB=∠EBP,
∴∠PEC=∠EBP+∠EPB=2∠PBE=∠CAP
∴∠PAB=2∠PBA,且∠ABP+∠BAP=60°,
∴∠PAB=40°,
∴∠CAB=80°故选:C.
【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,
求证:∠A+∠C=180°.
证明:在线段BC上截取BE=BA,连接DE,如图所示.
∵BD平分∠ABC,
∴∠ABD=∠EBD.
在△ABD和△EBD中,,
∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.
∵AD=CD,
∴ED=CD,∴∠DEC=∠C.
∵∠BED+∠DEC=180°,∴∠A+∠C=180°.
【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC于F.
(1)求△CDE的面积;
(2)证明:DF+CF=EF.
(1)解:在Rt△ADC中,∵AD=2,∠ADC=60°,
∴∠ACD=30°,
∴CD=CE=2AD=4,
∵EC⊥CD,
∴∠ECD=90°,
∴S△ECD=•CD•CE=×4×4=8.
(2)证明:在EF上取一点M,使得EM=DF,
∵EC=CD,∠E=∠CDF=45°,
∴△ECM≌△DCF,
∴CM=CF,
∵∠ADC=60°,
∠FDB=180°﹣60°﹣45°=75°,
∴∠DFB=∠CFM=180°﹣75°﹣45°=60°,
∴△CFM是等边三角形,
∴CF=MF,
∴EF=EM+MF=DF+CF.
模型二、平移全等模型
【例2】.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B.
(1)求证:△AED≌△EBC.
(2)当AB=6时,求CD的长.
(1)证明:∵AD∥EC,∴∠A=∠BEC,
∵E是AB中点,∴AE=EB,
∵∠AED=∠B,∴△AED≌△EBC.
(2)解:∵△AED≌△EBC,∴AD=EC,
∵AD∥EC,∴四边形AECD是平行四边形,∴CD=AE,
∵AB=6,∴CD=AB=3.
变式训练
【变式2-1】.如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
解:∵AB=CD,
∴AB+BC=CD+BC,
即AC=BD.
∵DE∥AF,
∴∠A=∠D.
在△AFC和△DEB中,,
∴△AFC≌△DEB(SAS).
在(2),(3)中结论依然成立.
如在(3)中,∵AB=CD,
∴AB﹣BC=CD﹣BC,
即AC=BD,
∵AF∥DE,
∴∠A=∠D.
在△ACF和△DEB中,,
∴△ACF≌△DEB(SAS).
【变式2-2】.如图,AD,BF相交于点O,AB∥DF,AB=DF,点E与点C在BF上,且BE=CF.
(1)求证:△ABC≌△DFE;
(2)求证:点O为BF的中点.
证明:(1)∵AB∥DF,
∴∠B=∠F,
∵BE=CF,
∴BC=EF,
在△ABC和△DFE中,
,
∴△ABC≌△DFE(SAS);
(2)∵△ABC≌△DFE,
∴AC=DE,∠ACB=∠DEF,
在△ACO和△DEO中,
,
∴△ACO≌△DEO(AAS),
∴EO=CO,
∴点O为BF的中点.
【变式2-3】.如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.
(1)求证:△AOC≌△BOD;
(2)若AD=1,∠ADC=60°,求CD的长.
(1)证明:∵△AOB和△COD均为等腰直角三角形,
∴∠AOB=∠COD=90°,OA=OB,OC=OD,
∴∠BOD+∠AOD=90°,∠AOC+∠AOD=90°,
∴∠BOD=∠AOC,
在△AOC和△BOD中,
,
∴△AOC≌△BOD(SAS);
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO=45°,
又∠BAO=45°,
∴∠CAD=90°,
∵AD=1,∠ADC=60°,∴CD=2AD=2.
模型三、对称全等模型
【例3】.如图,AD∥BC,∠D=90°,∠CPB=30°,∠DAB的角平分线与∠CBA的角平分线相交于点P,且D,P,C在同一条直线上.
(1)求∠PAD的度数;
(2)求证:P是线段CD的中点.
(1)解:∵AD∥BC,
∴∠C=180°﹣∠D=180°﹣90°=90°,
∵∠CPB=30°,
∴∠PBC=90°﹣∠B=60°,
∵PB平分∠ABC,
∴∠ABC=2∠PBC=120°,
∵AD∥BC,
∴∠DAB+∠ABC=180°,
∴∠DAB=180°﹣120°=60°,
∵AP平分∠DAB,
∴∠PAD=∠DAB=30°;
(2)证明:过P点作PE⊥AB于E点,如图,
∵AP平分∠DAB,PD⊥AD,PE⊥AB,
∴PE=PD,
∵BP平分∠ABC,PC⊥BC,PE⊥AB,
∴PE=PC,
∴PD=PC,
∴P是线段CD的中点.
变式训练
【变式3-1】.如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.
求证:AM=AN.
解:∵AB=AC,D、E分别是AB、AC的中点,
∴AD=BD=AE=EC,∠B=∠C,
在△DBC和△EBC中
∴△DBC≌△EBC,
∴∠BDC=∠BDE,
∵∠BDC=∠ADM,∠BEC=∠AEN,
∴∠ADM=∠AEN,
在△AMD和△ANE中
∵
∴△AMD≌△ANE
∴AM=AN.
【变式3-2】.如图,已知点E、F分别是正方形ABCD中边AB、BC上的点,且AB=12,AE=6,将正方形分别沿DE、DF向内折叠,此时DA与DC重合为DG,求CF的长度.
解:设CF=x,则FG=x,FB=12﹣x,
∵AB=12,AE=6,
∴BE=6,EG=6,
∴EF=6+x,
在Rt△BEF中,
BE2+BF2=EF2,
62+(12﹣x)2=(x+6)2,
x=4, 即CF的长为4.
【变式3-3】.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
解:PC与PD相等.理由如下:
过点P作PE⊥OA于点E,PF⊥OB于点F.
∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,
∴PE=PF(角平分线上的点到角两边的距离相等)
又∵∠AOB=90°,∠PEO=∠PFO=90°,
∴四边形OEPF为矩形,
∴∠EPF=90°,
∴∠EPC+∠CPF=90°,
又∵∠CPD=90°,
∴∠CPF+∠FPD=90°,
∴∠EPC=∠FPD=90°﹣∠CPF.
在△PCE与△PDF中,
∵,
∴△PCE≌△PDF(ASA), ∴PC=PD.
模型四、旋转全等模型
【例4】.如图,已知:AD=AB,AE=AC,AD⊥AB,AE⊥AC.猜想线段CD与BE之间的数量关系与位置关系,并证明你的猜想.
解:猜想:CD=BE,CD⊥BE,
理由如下:∵AD⊥AB,AE⊥AC,
∴∠DAB=∠EAC=90°.
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠CAD=∠EAB,
在△ACD和△AEB中,
,
∴△ACD≌△AEB(SAS),
∴CD=BE,∠ADC=∠ABE,
∵∠AGD=∠FGB,
∴∠BFD=∠BAD=90°,即CD⊥BE.
变式训练
【变式4-1】.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.
(1)如图1,点E在BC上,求证:BC=BD+BE;
(2)如图2,点E在CB的延长线上,求证:BC=BD﹣BE.
(1)证明:∵∠BAC=∠DAE,
∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,
即∠DAB=∠EAC,
又∵AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴BD=CE,
∴BC=BE+CE=BD+BE;
(2)证明:∵∠BAC=∠DAE,
∴∠BAC+∠EAB=∠DAE+∠EAB,
即∠DAB=∠EAC,
又∵AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴BD=CE,
∴BC=CE﹣BE=BD﹣BE.
【变式4-2】.如图所示,已知P是正方形ABCD外一点,且PA=3,PB=4,则PC的最大值是 3+4 .
解:如图,过点B作BE⊥BP,且BE=PB,连接AE、PE、PC,
则PE=PB=4,
∵∠ABE=∠ABP+90°,∠CBP=∠ABP+90°,
∴∠ABE=∠CBP,
在△ABE和△CBP中,
,
∴△ABE≌△CBP(SAS),
∴AE=PC,
由两点之间线段最短可知,点A、P、E三点共线时AE最大,
此时AE=AP+PE=3+4,
所以,PC的最大值是3+4. 故答案为:3+4.
模型五、手拉手全等模型
【例5】.如图,△ABC与△ADE是以点A为公共顶点的两个三角形,且AD=AE,AB=AC,∠DAE=∠CAB=90°,且线段BD、CE交于F.
(1)求证:△AEC≌△ADB.
(2)猜想CE与DB之间的关系,并说明理由.
(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△BAD与△CAE中,
,
∴△BAD≌△CAE(SAS);
(2)解:CE=DB,CE⊥DB.
理由:由(1)知,△BAD≌△CAE,
∴∠ABD=∠ACE,BD=CE,
∵∠BAC=90°,
∴∠CBF+∠BCF=∠ABC+∠ACB=90°,∴∠BFC=90°,∴CE⊥BD.
变式训练
【变式5-1】.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②AP=BQ;③DE=DP;④∠AOB=60°.恒成立的结论有几个( )
A.1个B.2个C.3个D.4个
解:①∵正△ABC和正△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,
∴∠ACD=∠BCE,
∴△ADC≌△BEC(SAS),
∴AD=BE,∠DAC=∠EBC,(故①正确);
②又∵AC=BC,∠ACP=∠BCQ=60°,∠DAC=∠EBC,
∴△CDP≌△CEQ(ASA).
∴AP=BQ,(故②正确);
③∵△ACP≌△BCQ,
∴AP=QB,
∵△ADC≌△BEC
∴AD=BE,
∴AD﹣AP=BE﹣QB,
∴DP=EQ,
∵DE>QE,且DP=QE,
∴DE>DP,(故③错误);
④∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故④正确).
∴正确的有:①②④.故选:C.
【变式5-2】.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.
证明:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,
∴∠BAC=∠DAE,
在△BAC和△DAE中,
,
∴△BAC≌△DAE(SAS);
(2)∵∠CAE=90°,AC=AE,
∴∠E=45°,
由(1)知△BAC≌△DAE,
∴∠BCA=∠E=45°,
∵AF⊥BC,
∴∠CFA=90°,
∴∠CAF=45°,
∴∠FAE=∠FAC+∠CAE=45°+90°=135°;
(3)延长BF到G,使得FG=FB,
∵AF⊥BG,
∴∠AFG=∠AFB=90°,
在△AFB和△AFG中,
,
∴△AFB≌△AFG(SAS),
∴AB=AG,∠ABF=∠G,
∵△BAC≌△DAE,
∴AB=AD,∠CBA=∠EDA,CB=ED,
∴AG=AD,∠ABF=∠CDA,
∴∠G=∠CDA,
∵∠GCA=∠DCA=45°,
在△CGA和△CDA中,
,
∴△CGA≌△CDA(AAS),
∴CG=CD,
∵CG=CB+BF+FG=CB+2BF=DE+2BF,
∴CD=2BF+DE.
【变式5-3】.(1)如图1,等腰△ABC与等腰△DEC有公共点C,且∠BCA=∠ECD,连接BE、AD,若BC=AC,EC=DC,求证:BE=AD.
(2)若将△DEC绕点C旋转至图2、图3、图4情形时,其余条件不变,BE与AD还相等吗?为什么?
证明:(1)∵∠BCA=∠ECD,
∴∠BCA﹣∠ECA=∠ECD﹣∠ECA,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD.
解:(2)图2、图3、图4中,BE和AD还相等,
理由是:如图图2、图3、图4,∵∠BCA=∠ECD,∠ACD+∠BCA=180°,∠ECD+∠BCE=180°,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
,
∴△BCE≌△ACD(SAS),
∴BE=AD.
实战演练
1.如图,已知,,且,,,则的度数为( )
A.B.C.D.
在△ABC和△ADE中 ∴ △ABC≌△ADE(SAS)∴∠BAC=∠DAE
∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE
∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°
在△FGD中,∠EGF=∠D+∠GFD=115°故选:C
2.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:
①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有( )个.
A.4B.3C.2D.1
解:∵∠AOB=∠COD=36°,
∴∠AOB+∠BOC=∠COD+∠BOC,
即∠AOC=∠BOD,
在△AOC和△BOD中,
∴△AOC≌△BOD(SAS),
∴∠OCA=∠ODB,AC=BD,故②正确;
∵∠OAC=∠OBD,
由三角形的外角性质得:
∠AMB+∠OBD=∠OAC+∠AOB,
∴∠AMB=∠AOB=36°,故①正确;
法一:作OG⊥AM于G,OH⊥DM于H,如图所示,
则∠OGA=∠OHB=90°,
∵△AOC≌△BOD,
∴OG=OH,
∴MO平分∠AMD,故④正确;
法二:∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴A、B、M、O四点共圆,
∴∠AMO=∠ABO=72°,
同理可得:D、C、M、O四点共圆,
∴∠DMO=∠DCO=72°=∠AMO,
∴MO平分∠AMD,
故④正确;
假设MO平分∠AOD,则∠DOM=∠AOM,
在△AMO与△DMO中,
,
∴△AMO≌△DMO(ASA),
∴AO=OD,
∵OC=OD,
∴OA=OC,
而OA<OC,故③错误;
正确的个数有3个;故选:B.
3.如图,在△ABC中,∠BAC=30°,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4,则BC2= 32﹣16 .
解:如图将△ABP绕点A顺时针旋转60°得到△AMG.连接PG,CM,
则AB=AC=AM,MG=PB,AG=AP,∠GAP=60°,
∴△GAP是等边三角形,
∴PA=PG,
∴PA+PB+PC=CP+PG+GM,
∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,
∵AP+BP+CP的最小值为4,
∴CM=4,
∵∠BAM=60°,∠BAC=30°,
∴∠MAC=90°,
∴AM=AC=4,
作BN⊥AC于N.则BN=AB=2,AN=2,CN=4﹣2,
∴BC2=BN2+CN2=22+(4﹣2)2=32﹣16,
故答案为:32﹣16.
4.正方形ABCD中,AB=6,点E在边CD上,CE=2DE,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连接AG,CF.下列结论:①△ABG≌△AFG; ②S△FGC=6;③EG=DE+BG;④BG=GC.其中正确的有 ①③④ (填序号).
解:∵正方形ABCD的边长为6,CE=2DE,
∴DE=2,EC=4,
∵将△ADE沿AE折叠至△AFE,
∴AF=AD=6,EF=ED=2,∠AFE=∠D=90°,∠FAE=∠DAE,
在Rt△ABG和Rt△AFG中,AB=AF,AG=AG,
∴Rt△ABG≌Rt△AFG(HL),
∴①正确;
∴GB=GF,∠BAG=∠FAG,
设BG=x,则:
GF=x,CG=BC﹣BG=6﹣x,
在Rt△CGE中,
GE=x+2,EC=4,CG=6﹣x,
∵CG2+CE2=GE2,
∴(6﹣x)2+42=(x+2)2,
解得:x=3,
∴BG=GF=3,CG=6﹣3=3,
∴BG=CG,
∴④正确;
∵EF=ED,GB=GF,
∴GE=GF+EF=BG+DE,
∴③正确;
∵S△GCE=GC•CE=×3×4=6,
∵GF=3,EF=ED=2,△GFC和△FCE等高,
∴S△GFC:S△FCE=3:2,
∴S△GFC=×6=≠3,
∴②不正确, 故答案为:①③④.
5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿对角线AC折叠,点D落在D′处.
(1)求证:AF=CF
(2)求AF的长度.
(1)证明:依题意可知,矩形沿对角线AC对折后有:
∠D′=∠B=90°,∠AFD′=∠CFB,BC=AD′,
∴△AD′F≌△CBF(AAS),
∴CF=AF;
(2)解:设AF=CF=x,
∴BF=8﹣x,
在Rt△BCF中有BC2+BF2=FC2,
即42+(8﹣x)2=x2,
解得x=5,
∴AF的长度为5.
6.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.
(1)求证:△ACD≌△BCE;
(2)若AB=3cm,则BE= 6 cm.
(3)BE与AD有何位置关系?请说明理由.
(1)证明:∵△ACB和△DCE都是等腰直角三角形,
∴CD=CE,CA=CB,
∵∠ACB=90°,∠DCE=90°,
∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS);
(2)解:∵△ACD≌△BCE,
∴AD=BE,
∵DB=AB=3cm,
∴BE=2×3cm=6cm;
(3)解:BE与AD垂直.理由如下:
∵△ACD≌△BCE,
∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.
7.如图,在△ABC中,∠BAC=90°,AB=AC,点D是AB的中点,连接CD,过B作BE⊥CD交CD的延长线于点E,连接AE,过A作AF⊥AE交CD于点F.
(1)求证:AE=AF;
(2)求证:CD=2BE+DE.
证明:(1)如图,∵∠BAC=90°,AF⊥AE,
∴∠EAB+∠BAF=∠BAF+∠FAC=90°,
∴∠EAB=∠FAC,
∵BE⊥CD,
∴∠BEC=90°,
∴∠EBD+∠EDB=∠ADC+∠ACD=90°,
∵∠EDB=∠ADC,
∴∠EBA=∠ACF,
∴在△AEB与△AFC中,,
∴△AEB≌△AFC(ASA),
∴AE=AF;
(2)如图,过点A作AG⊥EC,垂足为G.
∵AG⊥EC,BE⊥CE,
∴∠BED=∠AGD=90°,
∵点D是AB的中点,
∴BD=AD.
∴在△BED与△AGD中,,
∴△BED≌△AGD(AAS),
∴ED=GD,BE=AG,
∵AE=AF
∴∠AEF=∠AFE=45°
∴∠FAG=45°
∴∠GAF=∠GFA,
∴GA=GF,
∴CF=BE=AG=GF,
∵CD=DG+GF+FC,
∴CD=DE+BE+BE,
∴CD=2BE+DE.
8.如图:在等腰直角三角形中,AB=AC,点D是斜边BC上的中点,点E、F分别为AB,AC上的点,且DE⊥DF.
(1)若设BE=a,CF=b,满足+|b﹣5|=+,求BE及CF的长.
(2)求证:BE2+CF2=EF2.
(3)在(1)的条件下,求△DEF的面积.
(1)解:由题意得,
解得m=2,
则+|b﹣5|=0,
所以a﹣12=0,b﹣5=0,
a=12,b=5,
即BE=12,CF=5;
(2)证明:延长ED到P,使DP=DE,连接FP,CP,
在△BED和△CPD中,
,
∴△BED≌△CPD(SAS),
∴BE=CP,∠B=∠DCP,
在△EDF和△PDF中,
,
∴△EDF≌△PDF(SAS),
∴EF=FP,
∵∠B=∠DCP,∠A=90°,
∴∠B+∠ACB=90°,
∴∠ACB+∠DCP=90°,即∠FCP=90°,
在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,
∵BE=CP,PF=EF,
∴BE2+CF2=EF2;
(3)解:连接AD,
∵△ABC为等腰直角三角形,D为BC的中点,
∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,
∵ED⊥FD,
∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,
∴∠EDA=∠FDC,
在△AED和△CFD中,
,
∴△AED≌△CFD(ASA),
∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,
∴AB=AE+EB=5+12=17,
∴AF=AC﹣FC=AB﹣CF=17﹣5=12,
在Rt△EAF中,根据勾股定理得:EF==13,
设DE=DF=x,
根据勾股定理得:x2+x2=132,
解得:x=,即DE=DF=,
则S△DEF=DE•DF=××=.
9.如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 AE=BD ;请直接写出∠APD= 30° ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.
(1)解:如图1中,
∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴∠CAE=∠CDB,
∵∠AMC=∠DMP,
∴∠APD=∠ACD=30°,
故答案为AE=BD,30°
(2)解:如图2中,结论:AE=BD,∠APD=30°.
理由:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴∠CAE=∠CDB,∵∠AMP=∠DMC,∴∠APD=∠ACD=30°.
(3)证明:如图2﹣1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,
∵△ACE≌△DCB.
∴AE=BD,
∵S△ACE=S△DCB(全等三角形的面积相等),
∴CH=CG,
∴∠DPC=∠EPC(角平分线的性质定理的逆定理),
∵∠APD=∠BPE,∠APC=∠DPC+∠APD,∠BPC=∠EPC+∠BPE,
∴∠APC=∠BPC.
10.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
分析:把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C'处,即AC=AC',据以上操作,易证明△ACD≌△AC'D,所以∠AC'D=∠C,又因为∠AC'D>∠B,所以∠C>∠B.
感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
①求证:∠B+∠D=180°;
②求AB的长.
解:(1)BC﹣AC=AD.
理由如下:如图(a),在CB上截取CE=CA,连接DE,
∵CD平分∠ACB,∴∠ACD=∠ECD,
又CD=CD,
∴△ACD≌△ECD(SAS),
∴DE=DA,∠A=∠CED=60°,
∴∠CED=2∠CBA,
∵∠CED=∠CBA+∠BDE,
∴∠CBA=∠BDE,∴DE=BE,∴AD=BE,
∵BE=BC﹣CE=BC﹣AC,∴BC﹣AC=AD.
(2)①如图(b),在AB上截取AM=AD,连接CM,
∵AC平分∠DAB,∴∠DAC=∠MAC,
∵AC=AC,
∴△ADC≌△AMC(SAS),
∴∠D=∠AMC,CD=CM=12,
∵CD=BC=12,∴CM=CB,∴∠B=∠CMB,
∵∠CMB+∠CMA=180°,∴∠B+∠D=180°;
②设BN=a,
过点C作CN⊥AB于点N,
∵CB=CM=12,
∴BN=MN=a,
在Rt△BCN中,CN2=BC2﹣BN2=122﹣a2,
在Rt△ACN中,CN2=AC2﹣AN2=162﹣(8+a)2,
则122﹣a2=162﹣(8+a)2,
解得:a=3,
即BN=MN=3,则AB=14.
11.如图甲,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1,求∠BPC的度数和等边三角形ABC的边长.
(1)李明同学作了如图乙的辅助线,将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP',可说明△APP'是直角三角形从而问题得到解决.请你说明其中理由并完成问题解答.
(2)如图丙,在正方形ABCD内有一点P,且AP=,BP=,PC=1:类比第一小题的方法求∠BPC的度数,并直接写出正方形ABCD的面积.
解:(1)∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′,
∴AP′=CP=1,BP′=BP=,∠AP′B=∠BPC,
由旋转得:∠P'BP=∠ABC=60°,
∴△BPP′是等边三角形,
∴PP′=PB=,∠BP′P=60°,
∵AP′=1,AP=2,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,
∴∠BPC=∠AP′B=90°+60°=150°,
过点B作BM⊥AP′,交AP′的延长线于点M,
∴∠MP′B=30°,BM=P'B=,
由勾股定理得:P′M=,
AM=AP'+P'M=1+,
由勾股定理得:AB=;
(2)将△BPC绕点B逆时针旋转90°得到△AEB,如图丙,
与(1)类似:可得:AE=PC=1,BE=BP=,∠BPC=∠AEB,
∴∠EBP=∠ABC=90°,
∴∠BEP=45°,
由勾股定理得:EP=2,
∵AE=1,AP=,EP=2,
∴AE2+PE2=AP2,
∴∠AEP=90°,
∴∠BPC=∠AEB=90°+45°=135°,
过点B作BF⊥AE,交AE的延长线于点F;
∴∠FEB=45°,
∴FE=BF=1,
∴AF=2;
∴在Rt△ABF中,由勾股定理,得AB=,
∴正方形ABCD的面积为5.
答:∠BPC的度数是135°,正方形ABCD的面积为5.
12.在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.
(1)如图1,当点D落在线段BC的延长线上时,∠ADE的度数为 30° .
(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;
(3)在(2)的条件下,若AB=12,求CF的最大值.
解:(1)如图1中,设AD交EC于点O,
∵AB=AC,∠BAC=120°,
∴∠B=∠ACB=30°,
∵BA=CA,∠ACE=∠ACB=∠B,BD=CE,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠BAD=∠CAE,
∴∠DAE=∠BAC=120°,
∴∠ADE=∠AED=(180°﹣120°)=30°,故答案为30°.
(2)(1)中的结论还成立.
理由:如图2中,
∵∠BAC=120°,AB=AC,
∴∠B=∠ACB=30°,
又∵∠ACM=∠ACB,
∴∠B=∠ACM=30°,
又∵CE=BD,
∴△ABD≌△ACE(SAS),
∴AD=AE,∠1=∠2,
∴∠2+∠3=∠1+∠3=∠BAC=120°,即∠DAE=120°,
又∵AD=AE,
∴∠ADE=∠AED=30°.
(3)∵AB=AC,AB=12,
∴AC=12,
∵∠ADE=∠ACB=30°且∠DAF=∠CAD,
∴△ADF∽△ACD,
∴,
∴AD2=AF•AC,
∴AD2=12AF,
∴,
∴当AD最短时,AF最短、CF最长,
易得当AD⊥BC时,AF最短、CF最长,
此时.,
∴CF=AC﹣AF=12﹣3=9, ∴CF的最大值为9
相关试卷
这是一份模型05 相似三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型05相似三角形中的常见五种基本模型原卷版docx、模型05相似三角形中的常见五种基本模型解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份模型03 全等三角形中的常见五种基本模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型03全等三角形中的常见五种基本模型原卷版docx、模型03全等三角形中的常见五种基本模型解析版docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。
这是一份模型30 探照灯模型(讲+练)-备战2023年中考数学解题大招复习讲义(全国通用),文件包含模型30探照灯模型原卷版docx、模型30探照灯模型解析版docx等2份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。