2024年山东省青岛市开发区六中学数学九上开学质量检测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第(7)个图案中阴影小三角形的个数是( )
A.B.C.D.
2、(4分)下列分式约分正确的是( )
A.B.C.D.
3、(4分)已知,则式子的值是( )
A.48B.C.16D.12
4、(4分)下列式子从左到右的变形一定正确的是( )
A.B.C.D.
5、(4分)医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为( )
A.0.43×B.0.43×C.4.3×D.4.3×
6、(4分)已知关于的一元二次方程没有实数根,则实数的取值范围是( )
A.B.C.D.
7、(4分)下列给出的四边形中的度数之比,其中能够判定四边形是平行四边形的是( )
A.1:2:3:4B.2:3:2:3C.2:2:3:4D.1:2:2:1
8、(4分)下列说法正确的是( )
A.形如的式子叫分式B.整式和分式统称有理式
C.当x≠3时,分式无意义D.分式与的最简公分母是a3b2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.
10、(4分)对于实数x,我们[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=5,则x的取值范围是______.
11、(4分)2﹣6+的结果是_____.
12、(4分)用科学记数法表示______.
13、(4分)如图,在中,,,将绕点顺时针旋转,点、旋转后的对应点分别是点和,连接,则的度数是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,直线与轴交于点,与轴交于点;直线与轴交于点,与直线交于点,且点的纵坐标为4.
(1)不等式的解集是 ;
(2)求直线的解析式及的面积;
(3)点在坐标平面内,若以、、、为顶点的四边形是平行四边形,求符合条件的所有点的坐标.
15、(8分)已知一次函数的图象经过点,且与正比例函数的图象相交于点
(1)求a的值;
(2)求出一次函数的解析式;
(3)求的面积.
16、(8分)反比例函数的图象如图所示,,是该图象上的两点,
(1)求的取值范围;(2)比较与的大小.
17、(10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产、两种产品共50件.已知生产一件种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产种产品的件数为(件),生产、两种产品所获总利润为(元)
(1)试写出与之间的函数关系式:
(2)求出自变量的取值范围;
(3)利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?
18、(10分)去年3月,某炒房团以不多于2224万元不少于2152万元的资金分别从A城、B城买入小户型二手房(80平方米/套)共4000平方米.其中A城、B城的购入价格分别为4000元/平方米、7000元/平方米.自住建部今年5月约谈成都市政府负责同志后,成都市进一步加大了调控政策.某炒房团为抛售A城的二手房,决定从6月起每平方米降价1000元.如果卖出相同平方米的房子,那么5月的销售额为640万元,6月的销售额为560万元.
(1)A城今年6月每平方米的售价为多少元?
(2)请问去年3月有几种购入方案?
(3)若去年三月所购房产全部没有卖出,炒房团计划在7月执行销售方案:B城售价为1.05万元/平方米,并且每售出一套返还该购房者a元;A城按今年6月的价格进行销售。要使(2)中的所有方案利润相同,求出a应取何值?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)因式分解:x2﹣9y2= .
20、(4分)如图,平行四边形ABCD的面积为32,对角线BD绕着它的中点O按顺时针方向旋转一定角度后,其所在直线分别交BC,AD于点E、F,若AF=3DF,则图中阴影部分的面积等于_____
21、(4分)小李掷一枚均匀的硬币次,出现的结果如下:正、反、正、反、反、反、正、正、反、反、反、正,则出现“反面朝上”的频率为______.
22、(4分)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
23、(4分)如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB方向平移得到△DEF,若四边形ABED的面积等于8,则平移的距离为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在矩形ABCD中,AB=8,BC=6,点E是AB边上一点,连接CE,把△BCE沿CE折叠,使点B落在点B′处.
(1)当B′在边CD上时,如图①所示,求证:四边形BCB′E是正方形;
(2)当B′在对角线AC上时,如图②所示,求BE的长.
25、(10分)小明到眼镜店调查了近视眼镜镜片的度数和镜片焦距的关系,发现镜片的度数(度)是镜片焦距(厘米)()的反比例函数,调查数据如下表:
(1)求与的函数表达式;
(2)若小明所戴近视眼镜镜片的度数为度,求该镜片的焦距.
26、(12分)计算或化简:(1);(2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.
【详解】
解:由图可知:
第一个图案有阴影小三角形2个.
第二图案有阴影小三角形2+4=6个.
第三个图案有阴影小三角形2+8=10个,
那么第n个图案中就有阴影小三角形2+4(n-1)=4n-2个,
当n=7时,4n-2=4×7-2=26.
故选:A.
本题考查图形的变化规律,注意由特殊到一般的分析方法,此题的规律为:第n个图案中就有阴影小三角形4n-2个.
2、D
【解析】
解:A. ,故本选项错误;B. 不能约分,故本选项错误;
C. ,故本选项错误;D. ,故本选项正确;
故选D
3、D
【解析】
先通分算加法,再算乘法,最后代入求出即可.
【详解】
解:
=
=
=(x+y)(x-y),
当时,原式=4× =12,
故选:D.
本题考查分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
4、D
【解析】
分式的基本性质是分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.而如果分式的分子、分母同时加上或减去同一个非0的数或式子,分式的值改变.
【详解】
A.无法进行运算,故A项错误.
B.当c=0时无法进行运算,故B项错误.
C. 无法进行运算,故C项错误.
D. ,故D项正确.
故答案为:D
本题考查分式的性质,熟练掌握分式的性质定理是解题的关键.
5、D
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000043毫米,则这个数用科学记数法表示为4.3×10-5毫米,
故选:D.
本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6、A
【解析】
根据判别式的意义得到△=(-2)2-4m<0,然后解关于m的不等式即可.
【详解】
根据题意得△=(-2)2-4m<0,
解得m>1.
故选A.
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
7、B
【解析】
根据平行四边形的对角相等即可判断.
【详解】
∵平行四边形的对角相等,
∴的度数之比可以是2:3:2:3
故选B
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对角相等.
8、B
【解析】
根据分式的定义,分式有意义的条件以及最简公分母进行解答.
【详解】
A、形如且B中含有字母的式子叫分式,故本选项错误.
B、整式和分式统称有理式,故本选项正确.
C、当x≠3时,分式有意义,故本选项错误.
D、分式与的最简公分母是a2b,故本选项错误.
故选:B.
考查了最简公分母,分式的定义以及分式有意义的条件.因为1不能做除数,所以分式的分母不能为1.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、7,1
【解析】
由题意知,,
解得x=7,
这组数据中7,1各出现两次,出现次数最多,
故众数是7,1.
10、46≤x<1
【解析】
分析:根据题意得出5≤<6,进而求出x的取值范围,进而得出答案.
详解:∵[x]表示不大于x的最大整数,[]=5,∴5≤<6
解得:46≤x<1.
故答案为46≤x<1.
点睛:本题主要考查了不等式组的解法,得出x的取值范围是解题的关键.
11、
【解析】
先把各根式化为最简二次根式,再合并同类项即可.
【详解】
原式=-2+2
=3-2.
故答案为:3-2.
本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.
12、
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
0.00000021的小数点向右移动1位得到2.1,
所以0.00000021用科学记数法表示为2.1×10-1,
故答案为2.1×10-1.
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
13、35°
【解析】
由旋转的性质可得AB=AD,∠BAD=70°,由等腰三角形的性质和直角三角形的性质可求解.
【详解】
∵将△ABC绕点A顺时针旋转70°,
∴AB=AD,∠BAD=70°, ∠AED=90°
∴∠ABD=55°
∵∠BED=∠AED =90°
∴∠BDE=35°
故答案为35°
本题考查了旋转的性质,等腰三角形的性质和直角三角形的性质,熟练运用旋转的性质是本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)的面积为2;(3)符合条件的点共有3个:,,
【解析】
(1)直线l1交于点D,且点D的纵坐标为4,则4=2x+2,解得:x=1,故点D(1,4),即可求解;
(2)将点B、D的坐标代入y=kx+b,即可求解;
(3)分AB是平行四边形的一条边、AB是平行四边形的对角线两种情况,分别求解.
【详解】
(1)把代入得:
当时,
不等式的解集是
(2)把、代入得:
直线的解析式是:
令
由知:
的面积为2
(3),,
以、、、为顶点的四边形是平行四边形
由平移可知:,,
符合条件的点共有3个:,,
本题为一次函数综合运用题,涉及到平行四边形的基本性质、求解不等式等知识点,其中(3),要注意分类求解,避免遗漏.
15、(1)1(2)(3)
【解析】
(1)将点B代入正比例函数即可求出a的值;
(2)将点A、B代入一次函数,用待定系数法确定k,b的值即可;
(3)可将分割成两个三角形求其面积和即可.
【详解】
(1)依题意,点在正比例函数的图象上,
所以,
(2)依题意,点A、B在一次函数图象上,
所以,,解得:,.
一次函数的解析式为:,
(3)直线AB与y轴交点为,
的面积为:
本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.
16、(1);(2).
【解析】
(1)根据反比例函数的图象和性质可知2m-1>0,从而可以解答本题;
(2)根据反比例函数的性质可以判断b1与b2的大小.
【详解】
解:(1)由,得.
(2)由图知,随增大而减小.
又∵,
.
本题考查反比例函数图象上点的坐标特征、反比例函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、(1)y与x之间的函数关系式是;
(2)自变量x的取值范围是x = 30,31,1;
(3)生产A种产品 30件时总利润最大,最大利润是2元,
【解析】
(1)由于用这两种原料生产A、B两种产品共50件,设生产A种产品x件,那么生产B种产品(50-x)件.由A产品每件获利700元,B产品每件获利1200元,根据总利润=700×A种产品数量+1200×B种产品数量即可得到y与x之间的函数关系式;
(2)关系式为:A种产品需要甲种原料数量+B种产品需要甲种原料数量≤360;A种产品需要乙种原料数量+B种产品需要乙种原料数量≤290,把相关数值代入得到不等式组,解不等式组即可得到自变量x的取值范围;
(3)根据(1)中所求的y与x之间的函数关系式,利用一次函数的增减性和(2)得到的取值范围即可求得最大利润.
解答:解:(1)设生产A种产品x件,则生产B种产品(50-x)件,
由题意得:y=700x+1200(50-x)=-500x+60000,
即y与x之间的函数关系式为y=-500x+60000;
(2)由题意得,
解得30≤x≤1.
∵x为整数,
∴整数x=30,31或1;
(3)∵y=-500x+60000,-500<0,
∴y随x的增大而减小,
∵x=30,31或1,
∴当x=30时,y有最大值为-500×30+60000=2.
即生产A种产品30件,B种产品20件时,总利润最大,最大利润是2元.
“点睛”本题考查一次函数的应用,一元一次不等式组的应用及最大利润问题;得到两种原料的关系式及总利润的等量关系是解决本题的关键.
18、(1)A城今年6月每平方米的售价为元;(2)方案有四种,如表所示见解析;(3)应取40000元.
【解析】
(1)设A城今年6月每平方米的售价为x元,根据卖出相同平米房子的等量条件,列出分式方程,解分式方程即可;
(2)设去年3月从A城购进套,则根据“不多于2224万元不少于2152万元的资金”列出不等式,解不等式,根据不等式的限制即可确定可能方案;
(3)设A城有套,总利润为元,列出A城售出套数和总利润的关系式,最后根据与(2)利润相同,即可解答.
【详解】
(1)设A城今年6月每平方米的售价为x元,则
解之得:
经检验:是原方程的根.
答:A城今年6月每平方米的售价为元.
(2)设去年3月从A城购进套,则
解之得:
∴方案有四种,如下表所示:
(3)设A城有套,总利润为元,则
∴
∵所有方案利润相同
∴0000元
答:应取40000元.
本题考查了分式方程和一元一次不等式的应用,解题的关键是仔细审题,从而找到数量关系列出分式方程或不等式.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、.
【解析】
因为,所以直接应用平方差公式即可:.
20、1
【解析】
设DF=a,则AF=3a,AD=1a,设BC和AD之间的距离为h,求出BE=DF=a,根据平行四边形的面积求出ah=8,求出阴影部分的面积= ah,即可得出答案.
【详解】
设DF=a,则AF=3a,AD=1a,
设BC和AD之间的距离为h,
∵四边形BACD是平行四边形,
∴AD∥BE,AD=BC=1a,
BO=OD,
∵BE∥AD,
∴△BEO≌△DFO,
∴BE=DF=a,
∵平行四边形ABCD的面积为32,
∴1a×h=32,
∴ah=8,
∴阴影部分的面积S=S△BEO+S△DFO=×(BE+DF)×h=×(a+a)×h=ah=1,
故答案为1.
本题考查了旋转的性质和平行四边形的性质,能求出ah=8是解此题的关键.
21、
【解析】
根据题意可知“反面朝上”一共出现7次,再利用概率公式进行计算即可
【详解】
“反面朝上”一共出现7次,
则出现“反面朝上”的频率为
此题考查频率,解题关键在于掌握频率的计算方法
22、70°
【解析】
由旋转的角度易得∠ACA′=20°,若AC⊥A'B',则∠A′、∠ACA′互余,由此求得∠ACA′的度数,由于旋转过程并不改变角的度数,因此∠BAC=∠A′,即可得解.
【详解】
解:由题意知:∠ACA′=20°;
若AC⊥A'B',则∠A′+∠ACA′=90°,
得:∠A′=90°-20°=70°;
由旋转的性质知:∠BAC=∠A′=70°;
故∠BAC的度数是70°.
故答案是:70°
本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.
23、1
【解析】
∵将△ABC沿CB向右平移得到△DEF,四边形ABED的面积等于8,AC=4,
∴平移距离=8÷4=1.
点睛:本题考查平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.
二、解答题(本大题共3个小题,共30分)
24、(1)详见解析;(2)3
【解析】
(1)由折叠可得BE=B'E,BC=B'C,∠BCE=∠B'CE,由∠DCB=90°=∠B可证四边形BCB′E是正方形
(2)由折叠可得BC=B'C=6,则可求AB'=4,根据勾股定理可求B'E的长,即可得BE的长.
【详解】
(1)证明:∵△BCE沿CE折叠,
∴BE=B'E,BC=B'C
∠BCE=∠B'CE
∵四边形ABCD是矩形
∴∠DCB=90°=∠B
∴∠BCE=45°且∠B=90°
∴∠BEC=∠BCE=45°
∴BC=BE
∵BE=B'E,BC=B'C
∴BC=BE=B'C=B'E
∴四边形BCB'E是菱形
又∵∠B=90°
∴四边形BCB'E是正方形
(2)∵AB=8,BC=6
∴根据勾股定理得:AC=10
∵△BCE沿CE折叠
∴B'C=BC=6,BE=B'E
∴AB'=4,AE=AB﹣BE=8﹣B'E
在Rt△AB'E中,AE2=B'A2+B'E2
∴(8﹣B'E)2=16+B'E2
解得:BE'=3
∴BE=B'E=3
本题考查了折叠问题,正方形的判定,矩形的性质,勾股定理,根据勾股定理列出方程是本题的关键.
25、(1),;(2)该镜片的焦距为.
【解析】
(1)根据图表可以得到眼镜片的度数与焦距的积是一个常数,因而眼镜片度数与镜片焦距成反比例函数关系,即可求解;
(2)在解析式中,令y=500,求出x的值即可.
【详解】
(1)根据题意,设与的函数表达式为
把,代入中,得
∴与的函数表达式为.
(2)当时,
答:该镜片的焦距为.
考查了反比例函数的应用,正确理解反比例函数的特点,两个变量的乘积是常数,是解决本题的关键.
26、(1);(2).
【解析】
(1)选逐项化简,再合并同类项或同类二次根式即可;
(2)先计算二次根式的乘法和除法,再合并同类项即可.
【详解】
(1)
=4--4+2
=;
(2)
=a+-a
=.
本题考查了二次根式的混合运算,熟练掌握二次根式的性质及运算法则是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
眼镜片度数(度)
…
镜片焦距(厘米)
…
方案
一
二
三
四
A城(套)
24
25
26
27
B城(套)
26
25
24
23
2024年山东省青岛市市北区数学九上开学质量跟踪监视试题【含答案】: 这是一份2024年山东省青岛市市北区数学九上开学质量跟踪监视试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省青岛市开发区实验数学九年级第一学期开学质量检测试题【含答案】: 这是一份2024年山东省青岛市开发区实验数学九年级第一学期开学质量检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年山东省青岛市42中学九上数学开学教学质量检测试题【含答案】: 这是一份2024年山东省青岛市42中学九上数学开学教学质量检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。