2024年江西省抚州市临川区数学九年级第一学期开学预测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,下列结论不一定成立的是
A.
B.
C.
D.
2、(4分)已知点,点都在直线上,则,的大小关系是( )
A.B.C.D.无法确定
3、(4分)如果方程组的解x、y的值相等 则m的值是( )
A.1B.-1C.2D.-2
4、(4分)分式的计算结果是( )
A.B.C.D.
5、(4分)温州某企业车间有50名工人,某一天他们生产的机器零件个数统计如下表:
表中表示零件个数的数据中,众数是( )
A.5个B.6个C.7个D.8个
6、(4分)用配方法解一元二次方程,下列配方正确的是( )
A.B.C.D.
7、(4分)下列各式从左到右的变形中,是因式分解的为( )
A.B.
C.D.
8、(4分)下列命题中正确的是( )
A.一组对边相等,另一组对边平行的四边形是平行四边形
B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分且相等的四边形是正方形
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则BF的长为______.
10、(4分)如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.
11、(4分)若代数式的值比的值大3,则的值为______.
12、(4分)边长为2的等边三角形的面积为__________
13、(4分)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正确的序号是 (把你认为正确的都填上).
三、解答题(本大题共5个小题,共48分)
14、(12分)在平面直角坐标系xOy中,直线l与x轴,y轴分别交于A、B两点,且过点B(0,4)和C(2,2)两点.
(1)求直线l的解析式;
(2)求△AOB的面积;
(3)点P是x轴上一点,且满足△ABP为等腰三角形,直接写出所有满足条件的点P的坐标.
15、(8分)如图,在菱形ABCD中,AB=5,∠DAB=60°,点E是AD边的中点.点M是线段AB上的一个动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;
②当AM的值为 时,四边形AMDN是菱形.
16、(8分)我国南宋时期数学家秦九昭及古希腊的几何学家海伦对于问题:“已知三角形的三边,如何求三角形的面积”进行了研究,并得到了海伦—秦九昭公式:如果一个三角形的三条边分别为,记,那么三角形的面积为,请用此公式求解:在中,,,,求的面积.
17、(10分)已知△ABC,分别以BC,AB,AC为边作等边三角形BCE,ACF,ABD
(1)若存在四边形ADEF,判断它的形状,并说明理由.
(2)存在四边形ADEF的条件下,请你给△ABC添个条件,使得四边形ADEF成为矩形,并说明理由.
(3)当△ABC满足什么条件时四边形ADEF不存在.
18、(10分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示.
(1)图象表示了哪两个变量的关系?
(2)10时和11时,他分别离家多远?
(3)他最初到达离家最远的地方是什么时间?离家多远?
(4)11时到13时他行驶了多少千米?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)函数y=kx(k0)的图象上有两个点A1(,),A2(,),当<时,>,写出一个满足条件的函数解析式______________.
20、(4分)如图,在中,,.对角线AC与BD相交于点O,,则BD 的长为____________.
21、(4分)已知点,点,若线段AB的中点恰好在x轴上,则m的值为_________.
22、(4分)一组数据:,则这组数据的方差是__________.
23、(4分)如图,在□ ABCD 中,E 为 BC 中点,DE、AC 交于 F 点,则=_______.
二、解答题(本大题共3个小题,共30分)
24、(8分)亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部 , 颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置 , . 然后测出两人之间的距离 , 颖颖与楼之间的距离( , , 在一条直线上),颖颖的身高 , 亮亮蹲地观测时眼睛到地面的距离 . 你能根据以上测量数据帮助他们求出住宅楼的高度吗?
25、(10分)如图,在▱ABCD中,∠ABC、∠ADC的平分线分别交AD、BC于点E、F,求证:四边形BEDF是平行四边形.
26、(12分)(2010•清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
根据矩形性质进行判断:矩形的两条对角线相等,4个角是直角等.
【详解】
根据矩形性质, ,,只有D说法不正确的.
故选D
本题考核知识点:矩形性质. 解题关键点:熟记矩形性质.
2、A
【解析】
根据一次函数的性质,当k<0时,y随x的增大而减小,可以解答本题.
【详解】
解:∵y=-3x+2,k=-3<0,
∴y随x的增大而减小,
∵点A(-1,y1),B(2,y2)都在直线y=-3x+2上,
∴y1>y2,
故选:A.
本题考查一次函数y=kx+b(k≠0,且k,b为常数)的图象性质:当k>0时,y随x的增大而增大;当k<0时,y将随x的增大而减小.
3、B
【解析】
由题意x、y值相等,可计算出x=y=2,然后代入含有m的代数式中计算m即可
【详解】
x、y相等 即x=y=2,x-(m-1)y =6 即2−(m-1)×2=6 解得m=-1
故本题答案应为:B
二元一次方程组的解法是本题的考点,根据题意求出x、y的值是解题的关键
4、C
【解析】
解决本题首先应通分,最后要注意将结果化为最简分式.
【详解】
解:原式=,
故选C.
本题考查了分式的加减运算,掌握运算法则是解题关键.
5、C
【解析】
解:数字7出现了22次,为出现次数最多的数,故众数为7个,
故选C.
本题考查众数.
6、A
【解析】
【分析】方程两边同时加1,可得,左边是一个完全平方式.
【详解】方程两边同时加1,可得,即.
故选:A
【点睛】本题考核知识点:配方. 解题关键点:理解配方的方法.
7、D
【解析】
根据把整式变成几个整式的积的过程叫因式分解进行分析即可.
【详解】
A、是整式的乘法运算,不是因式分解,故A不正确;
B、是积的乘方,不是因式分解,故B不正确;
C、右边不是整式乘积的形式,故C不正确;
D、是按照平方差公式分解的,符合题意,故D正确;
故选:D.
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法的区别.
8、D
【解析】
根据根据矩形、菱形、正方形和平行四边形的判定方法对各选项进行判断.
【详解】
A.一组对边相等且平行的四边形是平行四边形,所以A选项错误。
B. 对角线相等的平行四边形是矩形,所以B选项错误;
C. 对角线互相垂直的平行四边形是菱形,所以C选项错误;
D. 对角线互相垂直平分且相等的四边形是正方形,所以D选项正确;
故选D
此题考查命题与定理,解题关键在于掌握各判定法则
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出BF即可.
【详解】
解:四边形ABCD是矩形,
∴∠A=90°, AB=6,AD=BC=8,
∴BD= =10,
又∵EF是BD的垂直平分线,
∴OB=OD=5,∠BOF=90°,
又∵∠C=90°,
∴△BOF∽△BCD,
∴ ,即:,解得:BF=
本题考查的是矩形的性质、线段垂直平分线的性质、相似三角形的性质和判定以及勾股定理的应用,掌握矩形的四个角是直角、对边相等以及线段垂直平分线的定义是解题的关键.
10、5cm
【解析】
根据正方形的面积可用对角线进行计算解答即可.
【详解】
解:因为正方形AECF的面积为18cm2,
所以AC==6cm,
因为菱形ABCD的面积为24cm2,
所以BD==8cm,
所以菱形的边长==5cm.
故答案为:5cm.
此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.
11、1或2;
【解析】
根据题意列出方程,求出方程的解即可得到x的值.
【详解】
解:根据题意得:x2+4x-1-3x2+2x=3,即x2-3x+2=0,
分解因式得:(x-1)(x-2)=0,
解得:x1=1,x2=2,
故答案为:1或2.
本题考查解一元二次方程-因式分解法,熟练掌握各种解法是解本题的关键.
12、
【解析】
根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
【详解】
∵等边三角形高线即中点,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴
∴
故答案为:
考查等边三角形的性质以及面积,勾股定理等,熟练掌握三线合一的性质是解题的关键.
13、①②④
【解析】
分析:∵四边形ABCD是正方形,∴AB=AD。
∵△AEF是等边三角形,∴AE=AF。
∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
如图,连接AC,交EF于G点,
∴AC⊥EF,且AC平分EF。
∵∠CAD≠∠DAF,∴DF≠FG。
∴BE+DF≠EF。∴③说法错误。
∵EF=2,∴CE=CF=。
设正方形的边长为a,在Rt△ADF中,,解得,
∴。
∴。∴④说法正确。
综上所述,正确的序号是①②④。
三、解答题(本大题共5个小题,共48分)
14、(1)y=﹣x+4;(2)8;(3)点P坐标为(﹣4,0)或(4+4,0)或(4﹣4,0)或(0,0)
【解析】
(1)直线过(2,2)和(0,4)两点,则 待定系数法求解析式.
(2)先求A点坐标,即可求△AOB的面积
(3)分三类讨论,可求点P的坐标
【详解】
解(1)设直线l的解析式y=kx+b
∵直线过(2,2)和(0,4)
∴
解得:
∴直线l的解析式y=﹣x+4
(2)令y=0,则x=4
∴A(4,0)
∴S△AOB=×AO×BO=×4×4=8
(3)∵OA=4,OB=4
∴AB=4
若AB=AP=4
∴在点A左边,OP=4﹣4,
在点A右边,OP=4+4
∴点P坐标(4+4,0),(4﹣4,0)
若BP=BP=4
∴P(﹣4,0)
若AP=BP则点P在AB的垂直平分线上,
∵△AOB是等腰直角三角形,
∴AB的垂直平分线过点O
∴点P坐标(0,0)
本题考查了待定系数法求一次函数解析式,等腰三角形的性质,关键是利用分类讨论的思想解决问题.
15、(1)见解析(2)① ②5
【解析】
(1)四边形ABCD是菱形,则ND∥AM,故∠NDE=∠MAE,∠DNE=∠AME.由于E是AD边的中点,则DE=AE.由全等三角形的判定定理,得出△NDE≌△MAE,故ND=MA.
根据平行四边形的判定方法,即可得出四边形AMDN是平行四边形.
【详解】
(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:① 若四边形AMDN是矩形,则∠DMA=90°,
在△AMD中,∠DMA=90°,∠DAB=60°,则∠ADM=30°.
在Rt△AMD中,∠AMD=30°,故AM=AD=.
②若四边形AMDN是菱形,则ADMN,
在Rt△MEA中,∠DAB=60°,则∠EMA=30°,
故AE=AM,即AM=2AE,
由于E是AD的中点,则AE=,
所以AM=2×=5.
本题是考查平行四边形的判定方法、菱形的性质、直角三角形的性质的综合性题目.熟练掌握平行四边形、菱形、直角三角形的性质及判定方法是解决本题的关键,本题也是中考题目常考题型.
16、
【解析】
利用阅读材料,先计算出p的值,然后根据海伦公式计算△ABC的面积;
【详解】
解:,,,
,
.
考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.
17、(1)详见解析;(2)当∠BAC=150°时,四边形ADEF是矩形;(3)∠BAC=60°时,这样的平行四边形ADEF不存在.
【解析】
(1)根据等边三角形的性质得出AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,求出∠DBE=∠ABC,根据SAS推出△DBE≌△ABC,根据全等得出DE=AC,求出DE=AF,同理AD=EF,根据平行四边形的判定推出即可;
(2)当AB=AC时,四边形ADEF是菱形,根据菱形的判定推出即可;当∠BAC=150°时,四边形ADEF是矩形,求出∠DAF=90°,根据矩形的判定推出即可;
(3)这样的平行四边形ADEF不总是存在,当∠BAC=60°时,此时四边形ADEF就不存在.
【详解】
(1)证明:∵△ABD、△BCE和△ACF是等边三角形,
∴AC=AF,AB=BD,BC=BE,∠EBC=∠ABD=60°,
∴∠DBE=∠ABC=60°﹣∠EBA,
在△DBE和△ABC中
,
∴△DBE≌△ABC,
∴DE=AC,
∵AC=AF,
∴DE=AF,
同理AD=EF,
∴四边形ADEF是平行四边形;
(2)解:当∠BAC=150°时,四边形ADEF是矩形,
理由是:∵△ABD和△ACF是等边三角形,
∴∠DAB=∠FAC=60°,
∵∠BAC=150°,
∴∠DAF=90°,
∵四边形ADEF是平行四边形,
∴四边形ADEF是矩形;
(3)解:这样的平行四边形ADEF不总是存在,
理由是:当∠BAC=60°时,∠DAF=180°,
此时点D、A、F在同一条直线上,此时四边形ADEF就不存在.
本题考查了菱形的判定,矩形的判定,平行四边形的判定,等边三角形的性质,全等三角形的性质和判定的应用,能综合运用定理进行推理是解此题的关键,题目比较好,难度适中.
18、(1)图象表示离家距离与时间之间的关系;(2)10时和11时,他分别离家15千米、20千米;(3)他最初到达离家最远的地方是13时,离家30千米;(4)11时到13时他行驶了10千米.
【解析】
(1)根据函数图像的变量之间关系即可写出;
(2)在函数图像直接可以看出;
(3)在函数图像直接可以看出;
(4)在函数图像得到数据进行计算即可.
【详解】
解:(1)图象表示离家距离与时间之间的关系;
(2)10时和11时,他分别离家15千米、20千米;
(3)他最初到达离家最远的地方是13时,离家30千米;
(4)11时到13时他行驶了:千米.
此题主要考查函数图像的信息识别,解题的关键是熟知函数图像中各点的含义.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、y=-x(k<0即可)
【解析】
根据A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2判断出函数图象的增减性即可.
【详解】
解:∵A1(x1,y1),A2(x2,y2)满足x1<x2时,y1>y2,
∴函数y=kx(k≠0)满足k<0
∴y=-x(k<0即可);
故答案为:y=-x(k<0即可).
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
20、
【解析】
利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.
【详解】
解:∵AC⊥BC,AB=CD=10,AD=6,
∴AC===8,
∵▱ABCD的对角线AC与BD相交于点O,
∴BO=DO,AO=CO=AC=4,
∴OD===2 .
∴BD=4.
故答案为:4.
本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.
21、2
【解析】
因为点A,B的横坐标相同,线段AB的中点恰好在x轴上,故点A,B关于x轴对称,纵坐标互为相反数,由此可得m的值.
【详解】
解:点A,B的横坐标相同,线段AB的中点恰好在x轴上
点A,B关于x轴对称,纵坐标互为相反数
点A的纵坐标为-2
故答案为:2
本题考查了平面直角坐标系中点的对称问题,正确理解题意是解题的关键.
22、
【解析】
首先计算平均数,再根据方差的计算公式计算即可.
【详解】
解:平均数为:
方差为:
故答案为2.5
本题主要考查数据统计中的平均数和方差的计算,方差的计算是考试的必考题,必须熟练掌握.
23、
【解析】
由平行四边形的性质可知:AD∥BC,BC=AD,所以△ADF∽△CEF,所以EF:DF=CE:AD,又CE:AD=CE:BC=1:2,问题得解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD,
∴△ADF∽△CEF,
∴EF:DF=CE:AD,
∵E为BC中点,
∴CE:AD=CE:BC=1:2,
∴= .
故答案为:.
此题考查平行四边形的性质,相似三角形的判定与性质,解题关键在于证明三角形相似
二、解答题(本大题共3个小题,共30分)
24、20.8m.
【解析】
试题分析:过A作CN的平行线交BD于E,交MN于F,由相似三角形的判定定理得出△ABE∽△AMF,再由相似三角形的对应边成比例即可得出MF的长,进而得出结论.
试题解析:过A作CN的平行线交BD于E,交MN于F.
由已知可得FN=ED=AC=0.8m,AE=CD=1.25m,EF=DN=30m,
∠AEB=∠AFM=90°.
又∵∠BAE=∠MAF,
∴△ABE∽△AMF.
∴,
即:,
解得MF=20m.
∴MN=MF+FN=20+0.8=20.8m.
∴住宅楼的高度为20.8m.
考点: 相似三角形的应用.
25、见解析
【解析】
根据平行四边形的性质得出∠ABC=∠ADC,AD∥BC,求出DE∥BF,∠EBC=∠AEB,根据角平分线的定义求出∠ADF=∠EBC,求出∠AEB=∠ADF,根据平行线的判定得出BE∥DF,根据平行四边形的判定得出即可.
【详解】
∵四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD∥BC,
∴DE∥BF,∠EBC=∠AEB,
∵∠ABC、∠ADC的平分线分别交AD、BC于点E、F,
∴∠ADF=ADC,∠EBC=ABC,
∴∠ADF=∠EBC,
∴∠AEB=∠ADF,
∴BE∥DF,
∵DE∥BF,
∴四边形BEDF是平行四边形.
本题考查了平行四边形的性质和判定,平行线的性质,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.
26、y=x+.
【解析】
试题分析:由题意正比例函数y=kx过点A(1,2),代入正比例函数求出k值,从而求出正比例函数的解析式,由题意y=ax+b的图象都经过点A(1,2)、B(4,0),把此两点代入一次函数根据待定系数法求出一次函数的解析式.
解:由正比例函数y=kx的图象过点(1,2),
得:k=2,
所以正比例函数的表达式为y=2x;
由一次函数y=ax+b的图象经过点(1,2)和(4,0)
得
解得:a=,b=,
∴一次函数的表达式为y=x+.
考点:待定系数法求一次函数解析式.
题号
一
二
三
四
五
总分
得分
零件个数(个)
5
6
7
8
人数(人)
3
15
22
10
2024年江西省抚州市临川区第四中学数学九年级第一学期开学学业水平测试试题【含答案】: 这是一份2024年江西省抚州市临川区第四中学数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年江西省抚州市临川区第四中学数学九年级第一学期开学调研试题【含答案】: 这是一份2024-2025学年江西省抚州市临川区第四中学数学九年级第一学期开学调研试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年江西省抚州市临川区数学九年级第一学期期末达标检测试题含答案: 这是一份2023-2024学年江西省抚州市临川区数学九年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了下列计算中,结果是的是,若点等内容,欢迎下载使用。