|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】01
    2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】02
    2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】

    展开
    这是一份2024年江苏省扬州市田家炳中学九年级数学第一学期开学教学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)生物刘老师对本班50名学生的血型进行了统计,列出如下统计表,则本班O型血的有( )
    A.17人B.15人C.13人D.5人
    2、(4分)若,则代数式的值是( )
    A.9B.7C.D.1
    3、(4分)如图,平行四边形ABCD的两条对角线相交于点O,点E是AB边的中点,图中已有三角形与△ADE面积相等的三角形(不包括△ADE)共有( )个.
    A.3B.4C.5D.6
    4、(4分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为( )
    A.4米B.4米C.8米D.8米
    5、(4分)三角形两边的长分别是8和6,第三边的长是方程x2-12x+20=0的一个实数根,则三角形的周长是( )
    A.24 B.24或16 C.26 D.16
    6、(4分)如图,菱形中,,点是边上一点,占在上,下列选项中不正确的是( )
    A.若,则
    B.若, 则
    C.若,则的周长最小值为
    D.若,则
    7、(4分)如果(2+)2=a+b,a,b为有理数,那么a+b=( )
    A.7+4B.11C.7D.3
    8、(4分)如果直角三角形的边长为3,4,a,则a的值是( )
    A.5B.6C.D.5或
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,,AE、BF分别交BD、AC于M、N两点,连OE、下列结论:;;;,其中正确的序数是______.
    10、(4分)在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.
    11、(4分)若点和点都在一次函数的图象上,则________(选择“”、“”、“”填空).
    12、(4分)某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602cm,若甲跳远成绩的方差为=65.84,乙跳远成绩的方差为=285.21,则成绩比较稳定的是_____.(填“甲”或“乙”)
    13、(4分)计算−的结果为______
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,正方形ABCD的对角线AC,BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM与BD相交于F.
    (1)直接写出线段OE与OF的数量关系;
    (2)如图2,若点E在AC的延长线上,过点A作AM⊥BE ,AM交DB的延长线于点F,其他条件不变.问(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,说明理由;
    (3)如图3,当BC=CE时,求∠EAF的度数.
    15、(8分)某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.
    (1)求2015年至2017年该地区投入教育经费的年平均增长率;
    (2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.
    16、(8分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.
    (1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?
    17、(10分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.
    (1)若将这种水果每斤的售价降低x元,则每天的销售量是 斤(用含x的代数式表示);
    (2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?
    18、(10分)已知:关于的方程.
    (1)不解方程,判断方程的根的情况;
    (2)若为等腰三角形,腰,另外两条边是方程的 两个根,求此三角形的周长.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.
    20、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
    21、(4分)在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
    22、(4分)为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)
    23、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系中,三个顶点的坐标分别为(–2,1),(–1,4),(–3,2).
    (1)写出点关于点成中心对称点的坐标;
    (2)以原点为位似中心,位似比为2:1,在轴的左侧画出C放大后的,并直接写出点的坐标.
    25、(10分)(1)计算:;
    (2)已知,求代数式的值.
    26、(12分)如图,在□ABCD中,对角线AC、BD相交于点O,过点O的直线分别交边AD、BC于E、F,
    (1)根据题意补全图形;
    (2)求证:DE=BF.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数.
    【详解】
    解:本班O型血的有:50×0.1=5(人),
    故选:D.
    本题考查了频率与频数,正确理解频率频数的意义是解题的关键.
    2、D
    【解析】
    本题直接可以把代入到原式进行计算,注意把看作整体用括号括起来,再依次替换原式中的a,按照实数的运算规律计算.
    【详解】
    代入得:

    故答案为D
    本题考察了代值求多项式的值,过程中注意把代入的值整体的替换时,务必打好括号,避免出错.再按照实数的运算规律计算.
    3、C
    【解析】
    试题分析:首先利用平行四边形的性质证明△ADB≌△CBD,从而得到△CDB,与△ADB面积相等,再根据DO=BO,AO=CO,利用三角形的中线把三角形的面积分成相等的两部分可得△DOC、△COB、△AOB、△ADO面积相等,都是△ABD的一半,根据E是AB边的中点可得△ADE、△DEB面积相等,也都是△ABD的一半,从而得到S△DOC=S△COB=S△DOA=S△AOB=S△ADE=S△DEB=S△ADB.不包括△ADE共有5个三角形与△ADE面积相等,
    故选C.
    考点:平行四边形的性质
    4、D
    【解析】
    分析:由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,将问题转化为求OA;根据∠BAD=60°得到△ABD为等边三角形,即可求出OB的长,再利用勾股定理求出OA即可求解.
    详解:设AC与BD交于点O.
    ∵四边形ABCD为菱形,
    ∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.
    ∵∠BAD=60°,AB=AD,
    ∴△ABD为等边三角形,
    ∴BD=AB=8米,
    ∴OD=OB=4米.
    在Rt△AOB中,根据勾股定理得:OA=4(米),
    ∴AC=2OA=8米.
    故选D.
    点睛:本题主要考查的是勾股定理,菱形的性质以及等边三角形的判定与性质,熟练掌握菱形的性质是解题的关键.
    5、A
    【解析】
    试题分析:

    ∴或
    ∴,
    而三角形两边的长分别是8和6,
    ∵2+6=8,不符合三角形三边关系,=2舍去,
    ∴x=10,即三角形第三边的长为10,
    ∴三角形的周长=10+6+8=1.
    故选A.
    考点:解一元二次方程-因式分解法;三角形三边关系.
    点评:本题考查了利用因式分解法解一元二次方程的方法:先把方程化为一般形式,然后把方程左边因式分解,这样就把方程化为两个一元一次方程,再解一元一次方程即可.也考查了三角形三边的关系.
    6、D
    【解析】
    A.正确,只要证明即可;
    B.正确,只要证明进而得到是等边三角形,进而得到结论;
    C.正确,只要证明得出是等边三角形,因为的周长为,所以等边三角形的边长最小时,的周长最小,只要求出的边长最小值即可;
    D.错误,当时,,由此即可判断.
    【详解】
    A正确,理由如下:
    都是等边三角形,
    B正确,理由如下:
    是等边三角形,
    同理
    是等边三角形,
    C正确,理由如下:
    是等边三角形,
    的周长为:

    等边三角形边长最小时,的周长最小,
    当时,DE最小为,
    的周长最小值为.
    D错误,当时,,此时时变化的不是定值,故错误.
    故选D.
    本题主要考查全等的判定的同时,结合等边三角形的性质,涉及到最值问题,仔细分析图形,明确图形中的全等三角形是解决问题的关键.
    7、B
    【解析】
    直接利用完全平方公式将原式展开,进而得出a,b的值,即可得出答案.
    【详解】
    解:∵(2+)2=a+b(a,b为有理数),
    ∴7+4=a+b,
    ∴a=7,b=4,
    ∴a+b=1.
    故选B.
    此题主要考查了二次根式的化简求值,正确得出a,b的值是解题关键.
    8、D
    【解析】
    分两种情况分析:a是斜边或直角边,根据勾股定理可得.
    【详解】
    解:当a是斜边时,a=;
    当a是直角边时,a=
    所以,a的值是5或
    故选:D.
    本题考核知识点:勾股定理,解题关键点:分两种情况分析.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    易证得≌,则可证得结论正确;
    由≌,可得,证得,选项正确;
    证明是等腰直角三角形,求得选项正确;
    证明≌,根据正方形被对角线将面积四等分,即可得出选项正确.
    【详解】
    解:四边形ABCD是正方形,
    ,,
    在和中,

    ≌,

    故正确;
    由知:≌,



    故正确;
    四边形ABCD是正方形,
    ,,
    是等腰直角三角形,


    故正确;
    四边形ABCD是正方形,
    ,,
    在和中,

    ≌,


    故正确;
    故答案为:.
    此题属于四边形的综合题考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质注意掌握全等三角形的判定与性质是解此题的关键.
    10、2
    【解析】
    根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.
    【详解】
    作点E′和E关于BD对称.则连接AE′交BD于点P,
    ∵四边形ABCD是菱形,AB=4,E为AD中点,
    ∴点E′是CD的中点,
    ∴DE′=DC=×4=2,AE′⊥DC,
    ∴AE′=.
    故答案为2.
    此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.
    11、
    【解析】
    可以分别将x=1和x=2代入函数算出的值,再进行比较;或者根据函数的增减性,判断函数y随x的变化规律也可以得出答案.
    【详解】
    解:∵一次函数
    ∴y随x增大而减小
    ∵1<2

    故答案为:
    本题考查一次函数的增减性,熟练掌握一次函数增减性的判断是解题关键.
    12、甲.
    【解析】
    试题分析:∵=65.84,=285.21,∴<,∴甲的成绩比乙稳定.故答案为甲.
    考点:方差.
    13、-1
    【解析】
    试题分析:由分式的加减运算法则可得:== -1
    考点:分式的运算
    点评:此题是简单题,分式的加减运算,分母相同的,分子直接相加减;分母不用的要先通分,然后再计算.
    三、解答题(本大题共5个小题,共48分)
    14、 (1) OE=OF; (2) OE=OF仍然成立,理由见解析;(3)67.5°.
    【解析】
    分析:(1)根据正方形的性质利用ASA判定△AOF≌△BOE,根据全等三角形的对应边相等得到OE=OF;
    (2)类比(1)的方法证得同理得出结论成立;
    (3)由BC=CE, 可证AB=BF,从而∠F=∠FAB=∠ABD=22.5°,然后根据∠EAF=∠FAB+∠BAO计算即可.
    详解:(1)OE=OF;
    (2)OE=OF仍然成立,理由是:
    由正方形ABCD对角线垂直得,∠BOC=90°,
    ∵AM⊥BE ∴∠BMF=90°,
    ∴∠BOC=∠BMF.
    ∵∠MBF=∠OBE,
    ∴∠F=∠E,
    又∵AO=BO,
    ∴△AOF≌△BOE,
    ∴OE=OF;
    (3)由(2)得OE=OF,且OB=OC,则BF=CE,
    ∵BC=CE,
    ∴AB=BF,
    ∴∠F=∠FAB=∠ABD=22.5°,
    又∵∠BAO=45°,
    ∴∠EAF=∠FAB+∠BAO=22.5°+45°=67.5°.
    点睛:本题考查正方形的性质,三角形全等的判定与性质,三角形外角的性质,是一道结论探索性问题.解答此类题我们要从变化中探究不变的数学本质,再从不变的数学本质出发,寻求变化的规律,通过观察,试验,归纳,类比等获得数学猜想,并对所作的猜想进行严密的逻辑论证,考查了学生对知识的迁移能力,分析问题,解决问题的能力.
    15、 (1)10%(2)不能.
    【解析】
    (1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;
    (2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.
    【详解】
    (1)设增长率为x,由题意得

    解得(不合题意,舍去)
    答:2015年至2017年该地区投入教育经费的年平均增长率为10%.
    (2)2019年该地区投入的教育经费是(万元),
    4245.89
    答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.
    此题考查一元二次方程的实际应用,此类是增长率问题的一元二次方程,可以根据“增长前量(1+增长率)=增长后量”列得方程.
    16、(1)见解析;(2)时,四边形CEDF是矩形.
    【解析】
    (1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;
    (2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB =90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.
    【详解】
    (1)四边形ABCD是平行四边形,
    ∴AD//BF,
    ∴∠DEF=∠CFE,∠EDC=∠FCD,
    ∵GD=GC,
    ∴△GED≌△GFC,
    ∴GE=GF,
    ∵GD=GC,GE=GF,
    ∴四边形CEDF是平行四边形;
    (2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:
    作AP⊥BC于P,则∠APB=∠APC=90°,
    ∵∠B=60°,
    ∴∠PAB=90°-∠B=30°,
    ∴BP=AB==3cm,
    四边形ABCD是平行四边形,
    ∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,
    ∵AE=7cm,
    ∴DE=AD-AE=3cm=BP,
    ∴△ABP≌△CDE,
    ∴∠CED=∠APB=90°,
    又∵四边形CEDF是平行四边形,
    ∴平行四边形CEDF是矩形,
    即当AE=7cm时,四边形CEDF是矩形.
    本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.
    17、(1)100+200x;(2)1.
    【解析】
    试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论;
    (2)根据销售量×每斤利润=总利润列出方程求解即可得到结论.
    试题解析:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x斤;
    (2)根据题意得:,解得:x=或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1.
    答:张阿姨需将每斤的售价降低1元.
    考点:1.一元二次方程的应用;2.销售问题;3.综合题.
    18、(1)无论为何值,该方程总有两个不相等的实数根;(2)此三角形的周长为或.
    【解析】
    (1)根据判别式即可求出答案.
    (2)由题意可知:该方程的其中一根为5,从而可求出m的值,最后根据m的值即可求出三角形的周长;
    【详解】
    解:(1),
    无论为何值,该方程总有两个不相等的实数根
    (2),为等腰三角形,另外两条边是方程的根,
    是方程的根.
    将代入原方程,得:,解得:.
    当时,原方程为,解得:,
    能够组成三角形,
    该三角形的周长为;
    当时,原方程为,解得:,
    ,能够组成三角形,
    该三角形的周长为.
    综上所述:此三角形的周长为或.
    本题考查一元二次方程,等腰三角形的定义,三角形三边的关系,解题的关键是熟练运用根与系数的关系,本题属于中等题型.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.
    【详解】
    设AP,EF交于O点,
    ∵四边形ABCD为菱形,
    ∴BC∥AD,AB∥CD.
    ∵PE∥BC,PF∥CD,
    ∴PE∥AF,PF∥AE.
    ∴四边形AEFP是平行四边形.
    ∴S△POF=S△AOE.
    即阴影部分的面积等于△ABC的面积.
    ∵△ABC的面积等于菱形ABCD的面积的一半,
    菱形ABCD的面积=ACBD=5,
    ∴图中阴影部分的面积为5÷2=.
    20、
    【解析】
    根据平行四边形的性质可得到答案.
    【详解】
    ∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
    本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
    21、0.5
    【解析】
    首先根据三角形周长及斜边长度求得两直角边的和,再根据勾股定理得出两直角边各自平方数的和的值,再利用完全平方公式得出两直角边的乘积的2倍的值即可求出三角形面积.
    【详解】
    解:由题意可得AC+BC+AB=,
    ∵∠C=90°,则AB为斜边等于2,
    ∴AC+BC=,
    再根据勾股定理得出,
    根据完全平方公式,
    将AC+BC=和代入公式得:,
    即=1,
    ∴Rt△ABC面积=0.5=0.5.
    本题考查了勾股定理,解题的关键是利用完全平方公式求得两直角边的乘积的2倍的值.
    22、抽样调查.
    【解析】
    根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
    【详解】
    解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,
    故答案为:抽样调查.
    本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    23、
    【解析】
    设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.
    【详解】
    解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,
    根据题意得.
    故答案为.
    本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.
    二、解答题(本大题共3个小题,共30分)
    24、(1)点的坐标;(2)图见解析;的坐标
    【解析】
    (1)根据对称点的方法很容易可写出C1的坐标.
    (2)首先根据位似中心画出位似图形,在写坐标即可.
    【详解】
    解:(1)点的坐标;
    (2)如图所示
    点的坐标
    本题主要考查位似图形的画法,关键在于位似中心,这是直角坐标系的必考题,必须熟练掌握.
    25、(1);(2)0.
    【解析】
    (1)先进行二次根式的乘除法运算,然后再进行减法运算即可;
    (2)将原式利用完全平方公式进行变形,然后将x的值代入进行计算即可.
    【详解】
    (1)原式

    (2)原式
    =

    将代入原式得,.
    本题考查二次根式的化简求值,灵活运用二次根式的性质进行解题是关键.
    26、(1)见解析;(2)见解析
    【解析】
    (1)根据题意画图即可补全图形;
    (2)由平行四边形的性质可得,,再根据平行线的性质可得,进而可根据ASA证明,进一步即可根据全等三角形的性质得出结论.
    【详解】
    解:(1)补全图形如图所示:
    (2)证明:∵四边形为平行四边形,
    ∴,,
    ∴,
    又∵,
    ∴(ASA),
    ∴.
    本题考查了按题意画图、平行四边形的性质和全等三角形的判定和性质等知识,属于基本题型,熟练掌握平行四边形的性质和全等三角形的判定和性质是解题的关键.
    题号





    总分
    得分
    批阅人
    相关试卷

    2024年江苏省扬州市田家炳中学九年级数学第一学期开学经典模拟试题【含答案】: 这是一份2024年江苏省扬州市田家炳中学九年级数学第一学期开学经典模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省无锡市桃溪中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024年江苏省无锡市桃溪中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年江苏省南通市崇川区田家炳中学数学九年级第一学期开学质量检测模拟试题【含答案】: 这是一份2024年江苏省南通市崇川区田家炳中学数学九年级第一学期开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map